A hybrid cloud is an efficient solution to deal with the problem of insufficient resources of a private cloud when computing demands increase beyond its resource capacities. Cost-efficient workflow scheduling, considering security requirements and data dependency among tasks, is a prominent issue in the hybrid cloud. To address this problem, we propose a mathematical model that minimizes the monetary cost of executing a workflow and satisfies the security requirements of tasks under a deadline. The proposed model fulfills data dependency among tasks, and data transmission time is formulated with exact mathematical expressions. The derived model is a Mixed-integer linear programming problem. We evaluate the proposed model with real-world workflows over changes in the input variables of the model, such as the deadline and security requirements. This paper also presents a post-optimality analysis that investigates the stability of the assignment problem. The experimental results show that the proposed model minimizes the cost by decreasing inter-cloud communications for dependent tasks. However, the optimal solutions are affected by the limitations that are imposed by the problem constraints.