Frequency‐specific dual‐attention based adversarial network for blood oxygen level‐dependent time series prediction

人类连接体项目 功能磁共振成像 计算机科学 默认模式网络 血氧水平依赖性 大脑活动与冥想 人工智能 机器学习 模式识别(心理学) 神经科学 脑电图 功能连接 心理学
作者
Weihao Zheng,Cong Bao,Renhui Mu,Jun Wang,Tongtong Li,Ziyang Zhao,Zhijun Yao,Bin Hu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (14)
标识
DOI:10.1002/hbm.70032
摘要

Abstract Functional magnetic resonance imaging (fMRI) is currently one of the most popular technologies for measuring brain activity in both research and clinical contexts. However, clinical constraints often result in short fMRI scan durations, limiting the diagnostic performance for brain disorders. To address this limitation, we developed an end‐to‐end frequency‐specific dual‐attention‐based adversarial network (FDAA‐Net) to extend the time series of existing blood oxygen level‐dependent (BOLD) data, enhancing their diagnostic utility. Our approach leverages the frequency‐dependent nature of fMRI signals using variational mode decomposition (VMD), which adaptively tracks brain activity across different frequency bands. We integrated the generative adversarial network (GAN) with a spatial–temporal attention mechanism to fully capture relationships among spatially distributed brain regions and temporally continuous time windows. We also introduced a novel loss function to estimate the upward and downward trends of each frequency component. We validated FDAA‐Net on the Human Connectome Project (HCP) database by comparing the original and predicted time series of brain regions in the default mode network (DMN), a key network activated during rest. FDAA‐Net effectively overcame linear frequency‐specific challenges and outperformed other popular prediction models. Test–retest reliability experiments demonstrated high consistency between the functional connectivity of predicted outcomes and targets. Furthermore, we examined the clinical applicability of FDAA‐Net using short‐term fMRI data from individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD). The model achieved a maximum predicted sequence length of 40% of the original scan durations. The prolonged time series improved diagnostic performance by 8.0% for ASD and 11.3% for MDD compared with the original sequences. These findings highlight the potential of fMRI time series prediction to enhance diagnostic power of brain disorders in short fMRI scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bigpluto完成签到,获得积分10
1秒前
3秒前
甜蜜的笑白完成签到,获得积分10
4秒前
orixero应助林方人点点采纳,获得10
4秒前
蓝颜完成签到,获得积分10
4秒前
科研怪咖小白完成签到,获得积分20
5秒前
TCM_XZ完成签到 ,获得积分10
5秒前
iehaoang完成签到 ,获得积分10
5秒前
gj2221423完成签到 ,获得积分10
5秒前
6秒前
现代雪柳完成签到,获得积分10
6秒前
整齐泥猴桃完成签到,获得积分10
6秒前
海狗完成签到,获得积分10
7秒前
滴滴嘟完成签到 ,获得积分10
7秒前
欢蛋完成签到 ,获得积分10
7秒前
wyx完成签到,获得积分10
7秒前
zdnhri完成签到,获得积分10
8秒前
大咖完成签到 ,获得积分10
8秒前
8秒前
衰神完成签到,获得积分10
8秒前
橡树完成签到,获得积分10
9秒前
9秒前
繁荣的世开完成签到,获得积分20
10秒前
10秒前
BruceQ完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
林方人点点完成签到,获得积分10
12秒前
xtang7979完成签到,获得积分10
13秒前
苏紫梗桔完成签到,获得积分10
13秒前
复杂谷蓝完成签到 ,获得积分10
13秒前
14秒前
wille完成签到,获得积分10
14秒前
15秒前
找不到完成签到,获得积分0
15秒前
小一完成签到,获得积分10
15秒前
大雄完成签到,获得积分10
16秒前
虚幻莹发布了新的文献求助10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567