Frequency‐specific dual‐attention based adversarial network for blood oxygen level‐dependent time series prediction

人类连接体项目 功能磁共振成像 计算机科学 默认模式网络 血氧水平依赖性 大脑活动与冥想 人工智能 机器学习 模式识别(心理学) 神经科学 脑电图 功能连接 心理学
作者
Weihao Zheng,Cong Bao,Renhui Mu,Jun Wang,Tongtong Li,Ziyang Zhao,Zhijun Yao,Bin Hu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (14)
标识
DOI:10.1002/hbm.70032
摘要

Abstract Functional magnetic resonance imaging (fMRI) is currently one of the most popular technologies for measuring brain activity in both research and clinical contexts. However, clinical constraints often result in short fMRI scan durations, limiting the diagnostic performance for brain disorders. To address this limitation, we developed an end‐to‐end frequency‐specific dual‐attention‐based adversarial network (FDAA‐Net) to extend the time series of existing blood oxygen level‐dependent (BOLD) data, enhancing their diagnostic utility. Our approach leverages the frequency‐dependent nature of fMRI signals using variational mode decomposition (VMD), which adaptively tracks brain activity across different frequency bands. We integrated the generative adversarial network (GAN) with a spatial–temporal attention mechanism to fully capture relationships among spatially distributed brain regions and temporally continuous time windows. We also introduced a novel loss function to estimate the upward and downward trends of each frequency component. We validated FDAA‐Net on the Human Connectome Project (HCP) database by comparing the original and predicted time series of brain regions in the default mode network (DMN), a key network activated during rest. FDAA‐Net effectively overcame linear frequency‐specific challenges and outperformed other popular prediction models. Test–retest reliability experiments demonstrated high consistency between the functional connectivity of predicted outcomes and targets. Furthermore, we examined the clinical applicability of FDAA‐Net using short‐term fMRI data from individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD). The model achieved a maximum predicted sequence length of 40% of the original scan durations. The prolonged time series improved diagnostic performance by 8.0% for ASD and 11.3% for MDD compared with the original sequences. These findings highlight the potential of fMRI time series prediction to enhance diagnostic power of brain disorders in short fMRI scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuLu完成签到 ,获得积分10
5秒前
研友_Z1eDgZ完成签到,获得积分10
11秒前
BING完成签到 ,获得积分10
12秒前
嘻嘻完成签到 ,获得积分10
13秒前
科研通AI2S应助U9A采纳,获得10
14秒前
丁玲玲完成签到 ,获得积分10
18秒前
20秒前
zombleq完成签到 ,获得积分10
21秒前
牛马完成签到,获得积分10
21秒前
萧萧发布了新的文献求助30
26秒前
33秒前
c123完成签到 ,获得积分10
33秒前
文与武完成签到 ,获得积分10
35秒前
35秒前
1993963发布了新的文献求助10
39秒前
kk2024应助科研通管家采纳,获得20
42秒前
Ava应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
喝酸奶不舔盖完成签到 ,获得积分10
50秒前
热心的飞风完成签到 ,获得积分10
1分钟前
海英完成签到,获得积分10
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
顺顺利利毕业完成签到 ,获得积分10
1分钟前
虚拟的水之完成签到 ,获得积分10
1分钟前
科研通AI2S应助U9A采纳,获得10
1分钟前
丘比特应助晨许沫光采纳,获得10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
flyingpig完成签到,获得积分10
1分钟前
秋纳瑞完成签到 ,获得积分10
1分钟前
master-f完成签到 ,获得积分10
1分钟前
1分钟前
挪威的森林完成签到,获得积分10
1分钟前
隐形的非笑完成签到 ,获得积分10
1分钟前
科研通AI5应助大力听芹采纳,获得10
1分钟前
悠雯完成签到 ,获得积分10
1分钟前
传奇3应助Emily采纳,获得10
1分钟前
三脸茫然完成签到 ,获得积分10
1分钟前
1分钟前
端庄半凡完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167368
捐赠科研通 3248732
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664