Frequency‐specific dual‐attention based adversarial network for blood oxygen level‐dependent time series prediction

人类连接体项目 功能磁共振成像 计算机科学 默认模式网络 血氧水平依赖性 大脑活动与冥想 人工智能 机器学习 模式识别(心理学) 神经科学 脑电图 功能连接 心理学
作者
Weihao Zheng,Cong Bao,Renhui Mu,Jun Wang,Tongtong Li,Ziyang Zhao,Zhijun Yao,Bin Hu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (14)
标识
DOI:10.1002/hbm.70032
摘要

Abstract Functional magnetic resonance imaging (fMRI) is currently one of the most popular technologies for measuring brain activity in both research and clinical contexts. However, clinical constraints often result in short fMRI scan durations, limiting the diagnostic performance for brain disorders. To address this limitation, we developed an end‐to‐end frequency‐specific dual‐attention‐based adversarial network (FDAA‐Net) to extend the time series of existing blood oxygen level‐dependent (BOLD) data, enhancing their diagnostic utility. Our approach leverages the frequency‐dependent nature of fMRI signals using variational mode decomposition (VMD), which adaptively tracks brain activity across different frequency bands. We integrated the generative adversarial network (GAN) with a spatial–temporal attention mechanism to fully capture relationships among spatially distributed brain regions and temporally continuous time windows. We also introduced a novel loss function to estimate the upward and downward trends of each frequency component. We validated FDAA‐Net on the Human Connectome Project (HCP) database by comparing the original and predicted time series of brain regions in the default mode network (DMN), a key network activated during rest. FDAA‐Net effectively overcame linear frequency‐specific challenges and outperformed other popular prediction models. Test–retest reliability experiments demonstrated high consistency between the functional connectivity of predicted outcomes and targets. Furthermore, we examined the clinical applicability of FDAA‐Net using short‐term fMRI data from individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD). The model achieved a maximum predicted sequence length of 40% of the original scan durations. The prolonged time series improved diagnostic performance by 8.0% for ASD and 11.3% for MDD compared with the original sequences. These findings highlight the potential of fMRI time series prediction to enhance diagnostic power of brain disorders in short fMRI scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笨笨幼蓉完成签到,获得积分10
2秒前
3秒前
小茉莉发布了新的文献求助10
4秒前
昏睡的白桃完成签到,获得积分10
4秒前
MM发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
tim发布了新的文献求助10
7秒前
赘婿应助ebby采纳,获得10
7秒前
9秒前
红烧肉耶完成签到 ,获得积分10
9秒前
时光悠应助中中中中中采纳,获得30
10秒前
xxfsx应助李思雨采纳,获得10
11秒前
小蘑菇应助啦啦啦啦啦采纳,获得10
11秒前
env发布了新的文献求助30
14秒前
sxmt123456789发布了新的文献求助10
14秒前
Oatmeal5888完成签到,获得积分10
14秒前
冷酷的松思完成签到,获得积分10
15秒前
17秒前
18秒前
真白硝子完成签到,获得积分10
19秒前
20秒前
ebby发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
Owen应助joysa采纳,获得10
24秒前
格桑花完成签到,获得积分10
24秒前
26秒前
星辰大海应助山水采纳,获得10
27秒前
env完成签到,获得积分10
28秒前
28秒前
ll完成签到 ,获得积分10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304