清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Frequency‐specific dual‐attention based adversarial network for blood oxygen level‐dependent time series prediction

人类连接体项目 功能磁共振成像 计算机科学 默认模式网络 血氧水平依赖性 大脑活动与冥想 人工智能 机器学习 模式识别(心理学) 神经科学 脑电图 功能连接 心理学
作者
Weihao Zheng,Cong Bao,Renhui Mu,Jun Wang,Tongtong Li,Ziyang Zhao,Zhijun Yao,Bin Hu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (14)
标识
DOI:10.1002/hbm.70032
摘要

Abstract Functional magnetic resonance imaging (fMRI) is currently one of the most popular technologies for measuring brain activity in both research and clinical contexts. However, clinical constraints often result in short fMRI scan durations, limiting the diagnostic performance for brain disorders. To address this limitation, we developed an end‐to‐end frequency‐specific dual‐attention‐based adversarial network (FDAA‐Net) to extend the time series of existing blood oxygen level‐dependent (BOLD) data, enhancing their diagnostic utility. Our approach leverages the frequency‐dependent nature of fMRI signals using variational mode decomposition (VMD), which adaptively tracks brain activity across different frequency bands. We integrated the generative adversarial network (GAN) with a spatial–temporal attention mechanism to fully capture relationships among spatially distributed brain regions and temporally continuous time windows. We also introduced a novel loss function to estimate the upward and downward trends of each frequency component. We validated FDAA‐Net on the Human Connectome Project (HCP) database by comparing the original and predicted time series of brain regions in the default mode network (DMN), a key network activated during rest. FDAA‐Net effectively overcame linear frequency‐specific challenges and outperformed other popular prediction models. Test–retest reliability experiments demonstrated high consistency between the functional connectivity of predicted outcomes and targets. Furthermore, we examined the clinical applicability of FDAA‐Net using short‐term fMRI data from individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD). The model achieved a maximum predicted sequence length of 40% of the original scan durations. The prolonged time series improved diagnostic performance by 8.0% for ASD and 11.3% for MDD compared with the original sequences. These findings highlight the potential of fMRI time series prediction to enhance diagnostic power of brain disorders in short fMRI scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
debu9完成签到,获得积分10
1秒前
852应助科研通管家采纳,获得10
5秒前
NattyPoe应助科研通管家采纳,获得10
5秒前
wuludie应助科研通管家采纳,获得10
5秒前
wuludie应助科研通管家采纳,获得10
5秒前
小羊咩完成签到 ,获得积分0
15秒前
15秒前
21秒前
kbkyvuy完成签到 ,获得积分10
25秒前
32秒前
crazy发布了新的文献求助10
34秒前
maprang完成签到,获得积分10
34秒前
哈哈哈完成签到 ,获得积分10
39秒前
默存完成签到,获得积分10
44秒前
清秀的沉鱼完成签到 ,获得积分10
56秒前
1分钟前
Setlla完成签到 ,获得积分10
1分钟前
DHW1703701完成签到,获得积分10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
佳言2009完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
热心芷雪完成签到,获得积分10
2分钟前
小马甲应助George采纳,获得10
2分钟前
科研通AI2S应助crazy采纳,获得10
2分钟前
awu完成签到 ,获得积分10
2分钟前
智者雨人完成签到 ,获得积分10
2分钟前
炳灿完成签到 ,获得积分10
2分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
予秋完成签到,获得积分10
3分钟前
予秋发布了新的文献求助10
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664623
求助须知:如何正确求助?哪些是违规求助? 4866702
关于积分的说明 15108196
捐赠科研通 4823260
什么是DOI,文献DOI怎么找? 2582164
邀请新用户注册赠送积分活动 1536238
关于科研通互助平台的介绍 1494619