Graph Curvature Flow-Based Masked Attention

图形 曲率 计算机科学 心理学 数学 理论计算机科学 几何学
作者
Yili Chen,Wan Zheng,Yangyang Li,Xiao He,Xian Wei,Jun Han
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01616
摘要

Graph neural networks (GNNs) have revolutionized drug discovery in chemistry and biology, enhancing efficiency and reducing resource demands. However, classical GNNs often struggle to capture long-range dependencies due to challenges like oversmoothing and oversquashing. Graph Transformers address these issues by employing global self-attention mechanisms that allow direct information exchange between any pair of nodes, enabling the modeling of long-range interactions. Despite this, Graph Transformers often face difficulties in capturing the nuanced structural information on graphs. To overcome these challenges, we introduce the CurvFlow-Transformer, a novel graph Transformer model incorporating a curvature flow-based masked attention mechanism. By leveraging a topologically enhanced mask matrix, the attention layer can effectively detect subtle structural differences within graphs, balancing the focus between global mutual information and local structural details of molecules. The CurvFlow-Transformer demonstrates superior performance on the MoleculeNet data set, surpassing several state-of-the-art models across various tasks. Moreover, the model provides unique insights into the relationship between molecular structure and chemical properties by analyzing the attention heat coefficients of individual atoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann完成签到,获得积分10
2秒前
luojie完成签到 ,获得积分10
2秒前
十点熄灯发布了新的文献求助10
4秒前
高高的天亦完成签到 ,获得积分10
4秒前
第七个太阳完成签到,获得积分10
4秒前
HEIKU应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
妮妮完成签到,获得积分10
5秒前
善学以致用应助飞兰采纳,获得10
9秒前
怕孤单的听寒完成签到,获得积分10
9秒前
wjw完成签到,获得积分10
10秒前
jor666完成签到,获得积分10
11秒前
11秒前
玫瑰遇上奶油完成签到,获得积分10
12秒前
丘比特应助黙宇循光采纳,获得10
13秒前
14秒前
15秒前
RUIT完成签到,获得积分10
16秒前
17秒前
18秒前
21秒前
RUIT发布了新的文献求助10
21秒前
21秒前
俭朴的乐巧完成签到 ,获得积分10
22秒前
调皮的如凡完成签到,获得积分10
22秒前
在我梦里绕完成签到,获得积分10
22秒前
22秒前
飞兰发布了新的文献求助10
22秒前
研友_nV2ROn完成签到,获得积分10
23秒前
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790850
关于积分的说明 7796798
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301745
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194