DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training

计算机科学 培训(气象学) 内存管理 张量(固有定义) 人工智能 并行计算 操作系统 覆盖 数学 气象学 纯数学 物理
作者
Haoran Zhou,Wei Rang,Hongyang Chen,Xiaobo Zhou,Dazhao Cheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 1920-1935
标识
DOI:10.1109/tpds.2024.3431910
摘要

Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的孤容完成签到,获得积分10
1秒前
1秒前
1秒前
petrichor应助优美的跳跳糖采纳,获得1020
1秒前
科研通AI2S应助fleee采纳,获得10
1秒前
传奇3应助凝子老师采纳,获得10
2秒前
2秒前
2秒前
theverve完成签到,获得积分10
3秒前
ZJW完成签到,获得积分10
3秒前
完美世界应助bitahu采纳,获得10
3秒前
霸王龙完成签到,获得积分10
4秒前
6秒前
7秒前
YYJ25发布了新的文献求助10
7秒前
伯赏诗霜发布了新的文献求助50
8秒前
霸王龙发布了新的文献求助10
8秒前
ZJW发布了新的文献求助10
9秒前
ptjam完成签到 ,获得积分10
10秒前
miss发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
sun发布了新的文献求助10
14秒前
Ava应助土里刨星星的鱼采纳,获得10
16秒前
欢呼冰岚完成签到,获得积分10
16秒前
大王卡发布了新的文献求助30
16秒前
凝子老师发布了新的文献求助10
16秒前
优雅海雪发布了新的文献求助10
18秒前
18秒前
正在获取昵称中...完成签到,获得积分10
20秒前
研白完成签到 ,获得积分10
21秒前
蜜雪冰城完成签到,获得积分10
21秒前
狂歌痛饮空度日完成签到,获得积分10
22秒前
隐形曼青应助侦察兵采纳,获得10
22秒前
欢呼冰岚发布了新的文献求助50
23秒前
陵铛铛铛发布了新的文献求助10
23秒前
搜集达人应助caoyy采纳,获得10
23秒前
YYJ25发布了新的文献求助10
24秒前
勤劳落雁发布了新的文献求助30
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849