亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training

计算机科学 培训(气象学) 内存管理 张量(固有定义) 人工智能 并行计算 操作系统 覆盖 数学 物理 气象学 纯数学
作者
Haoran Zhou,Wei Rang,Hongyang Chen,Xiaobo Zhou,Dazhao Cheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 1920-1935
标识
DOI:10.1109/tpds.2024.3431910
摘要

Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zzy采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
20秒前
空白完成签到 ,获得积分10
20秒前
24秒前
科研通AI2S应助ccc采纳,获得10
24秒前
zzy发布了新的文献求助10
29秒前
ccc完成签到,获得积分10
35秒前
37秒前
二中所长完成签到,获得积分10
40秒前
zzy完成签到 ,获得积分10
46秒前
小蘑菇应助xujiejiuxi采纳,获得30
1分钟前
美罗培南完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
Who发布了新的文献求助10
1分钟前
1分钟前
winkyyang完成签到 ,获得积分10
1分钟前
123应助cc采纳,获得10
1分钟前
个性雪糕发布了新的文献求助10
1分钟前
1分钟前
墨言无殇完成签到 ,获得积分10
1分钟前
茜茜发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
2分钟前
2分钟前
caca完成签到,获得积分10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
潇洒绿蕊完成签到,获得积分10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
丘比特应助叶思言采纳,获得10
2分钟前
捉迷藏完成签到,获得积分10
2分钟前
2分钟前
孤芳自赏IrisKing完成签到 ,获得积分10
2分钟前
2分钟前
GEM完成签到,获得积分20
2分钟前
GEM发布了新的文献求助10
2分钟前
3分钟前
3分钟前
lalaheilala完成签到 ,获得积分10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307359
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500151
捐赠科研通 2615398
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410