DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training

计算机科学 培训(气象学) 内存管理 张量(固有定义) 人工智能 并行计算 操作系统 覆盖 数学 气象学 纯数学 物理
作者
Haoran Zhou,Wei Rang,Hongyang Chen,Xiaobo Zhou,Dazhao Cheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 1920-1935
标识
DOI:10.1109/tpds.2024.3431910
摘要

Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的安柏完成签到 ,获得积分10
刚刚
天天快乐应助林钰浩采纳,获得10
刚刚
SQ完成签到,获得积分20
2秒前
顺利白竹发布了新的文献求助10
2秒前
diu应助炙热晓露采纳,获得30
2秒前
领导范儿应助小情思绪采纳,获得10
2秒前
3秒前
2025211022发布了新的文献求助30
4秒前
a.........发布了新的文献求助10
5秒前
ForestEcho发布了新的文献求助10
6秒前
6秒前
华仔应助ENIX采纳,获得10
6秒前
DL应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
黄cc应助flysky120采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得30
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
jin完成签到,获得积分20
7秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354035
求助须知:如何正确求助?哪些是违规求助? 4486507
关于积分的说明 13966675
捐赠科研通 4386923
什么是DOI,文献DOI怎么找? 2410096
邀请新用户注册赠送积分活动 1402435
关于科研通互助平台的介绍 1376249