DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training

计算机科学 培训(气象学) 内存管理 张量(固有定义) 人工智能 并行计算 操作系统 覆盖 数学 气象学 纯数学 物理
作者
Haoran Zhou,Wei Rang,Hongyang Chen,Xiaobo Zhou,Dazhao Cheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 1920-1935
标识
DOI:10.1109/tpds.2024.3431910
摘要

Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良元瑶完成签到,获得积分10
1秒前
浮游应助autism采纳,获得10
4秒前
动听剑封完成签到,获得积分10
5秒前
善良元瑶发布了新的文献求助10
6秒前
韩麒嘉完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
kkk完成签到,获得积分10
11秒前
fan发布了新的文献求助10
11秒前
谦让寄容完成签到,获得积分10
12秒前
圈圈黄发布了新的文献求助30
14秒前
渔夫完成签到,获得积分10
17秒前
天空之城完成签到,获得积分10
17秒前
18秒前
是我不得开心妍完成签到 ,获得积分10
18秒前
英姑应助77采纳,获得10
19秒前
shengwang完成签到,获得积分10
20秒前
的法国队完成签到,获得积分10
20秒前
安白发布了新的文献求助10
21秒前
22秒前
啊阿阿阿沐完成签到,获得积分10
23秒前
24秒前
7udo发布了新的文献求助10
25秒前
treasure完成签到 ,获得积分10
25秒前
迷人幻巧发布了新的文献求助10
27秒前
董帅发布了新的文献求助10
28秒前
不知月明是故乡完成签到 ,获得积分10
29秒前
一彤完成签到,获得积分10
30秒前
英俊的铭应助风清扬采纳,获得10
31秒前
31秒前
小蘑菇应助One采纳,获得10
31秒前
小丹小丹完成签到 ,获得积分10
31秒前
32秒前
7udo完成签到,获得积分10
34秒前
77发布了新的文献求助10
35秒前
Zhusy发布了新的文献求助30
35秒前
wills应助迷人幻巧采纳,获得10
35秒前
彭于晏应助迷人幻巧采纳,获得10
35秒前
朴素羊完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316