DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training

计算机科学 培训(气象学) 内存管理 张量(固有定义) 人工智能 并行计算 操作系统 覆盖 数学 物理 气象学 纯数学
作者
Haoran Zhou,Wei Rang,Hongyang Chen,Xiaobo Zhou,Dazhao Cheng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 1920-1935
标识
DOI:10.1109/tpds.2024.3431910
摘要

Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巨鱼完成签到,获得积分20
刚刚
小薇丸子完成签到,获得积分10
1秒前
jessie完成签到,获得积分10
3秒前
5秒前
星河万里发布了新的文献求助10
6秒前
niekyang完成签到 ,获得积分10
6秒前
somous完成签到,获得积分10
6秒前
6秒前
qinjiehm完成签到,获得积分10
9秒前
爱吃西瓜完成签到,获得积分10
9秒前
9秒前
yolo完成签到,获得积分10
9秒前
子期完成签到 ,获得积分10
10秒前
mw发布了新的文献求助10
10秒前
jstagey完成签到,获得积分10
10秒前
FashionBoy应助somous采纳,获得10
10秒前
彩色枫发布了新的文献求助10
10秒前
蒹葭完成签到,获得积分10
13秒前
王青文完成签到,获得积分10
13秒前
LHS驳回了爆米花应助
14秒前
15秒前
16秒前
mw完成签到,获得积分10
18秒前
19秒前
xiaotianli完成签到,获得积分10
20秒前
21秒前
爱吃西瓜发布了新的文献求助10
22秒前
追寻的问玉完成签到 ,获得积分10
22秒前
光亮水蓝关注了科研通微信公众号
23秒前
23秒前
SHARK完成签到,获得积分20
25秒前
orixero应助fvsuar采纳,获得10
26秒前
禛禛发布了新的文献求助10
28秒前
最佳发布了新的文献求助20
28秒前
kusedayang发布了新的文献求助10
29秒前
30秒前
34秒前
禛禛完成签到,获得积分10
34秒前
Lucas应助不二家的卡农采纳,获得10
35秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071