Multi-task heterogeneous graph learning on electronic health records

健康档案 计算机科学 任务(项目管理) 图形 人工智能 机器学习 电子健康档案 理论计算机科学 医疗保健 管理 经济 经济增长
作者
Tsai Hor Chan,Guosheng Yin,Kyongtae T. Bae,Lequan Yu
出处
期刊:Neural Networks [Elsevier]
卷期号:180: 106644-106644
标识
DOI:10.1016/j.neunet.2024.106644
摘要

Learning electronic health records (EHRs) has received emerging attention because of its capability to facilitate accurate medical diagnosis. Since the EHRs contain enriched information specifying complex interactions between entities, modeling EHRs with graphs is shown to be effective in practice. The EHRs, however, present a great degree of heterogeneity, sparsity, and complexity, which hamper the performance of most of the models applied to them. Moreover, existing approaches modeling EHRs often focus on learning the representations for a single task, overlooking the multi-task nature of EHR analysis problems and resulting in limited generalizability across different tasks. In view of these limitations, we propose a novel framework for EHR modeling, namely MulT-EHR (Multi-Task EHR), which leverages a heterogeneous graph to mine the complex relations and model the heterogeneity in the EHRs. To mitigate the large degree of noise, we introduce a denoising module based on the causal inference framework to adjust for severe confounding effects and reduce noise in the EHR data. Additionally, since our model adopts a single graph neural network for simultaneous multi-task prediction, we design a multi-task learning module to leverage the inter-task knowledge to regularize the training process. Extensive empirical studies on MIMIC-III and MIMIC-IV datasets validate that the proposed method consistently outperforms the state-of-the-art designs in four popular EHR analysis tasks - drug recommendation, and predictions of the length of stay, mortality, and readmission. Thorough ablation studies demonstrate the robustness of our method upon variations to key components and hyperparameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XX完成签到,获得积分10
刚刚
斯文败类应助六出采纳,获得10
1秒前
1秒前
2秒前
guozizi发布了新的文献求助10
3秒前
lu发布了新的文献求助10
3秒前
LIUJIE应助LLR采纳,获得10
4秒前
5秒前
ZhangHongyu发布了新的文献求助10
5秒前
5秒前
GEYUAN发布了新的文献求助10
6秒前
6秒前
bkagyin应助迷路曼青采纳,获得10
6秒前
在水一方应助饱满的醉山采纳,获得10
6秒前
7秒前
8秒前
huaming完成签到,获得积分10
8秒前
内向阑悦完成签到,获得积分10
9秒前
Jasper应助一米多采纳,获得10
9秒前
豆⑧完成签到,获得积分10
10秒前
11秒前
11秒前
希望天下0贩的0应助deng采纳,获得10
11秒前
惠明轩发布了新的文献求助10
11秒前
七千发布了新的文献求助10
11秒前
12秒前
HEIKU应助麦满分采纳,获得10
12秒前
12秒前
zss完成签到 ,获得积分10
13秒前
ppf发布了新的文献求助10
13秒前
毛豆应助SevenKing采纳,获得10
13秒前
14秒前
14秒前
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
脑洞疼应助zlh采纳,获得10
17秒前
研友_VZG7GZ应助iuv采纳,获得10
17秒前
18秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422352
求助须知:如何正确求助?哪些是违规求助? 3022634
关于积分的说明 8901990
捐赠科研通 2710080
什么是DOI,文献DOI怎么找? 1486297
科研通“疑难数据库(出版商)”最低求助积分说明 686999
邀请新用户注册赠送积分活动 682225