Deep residual fully connected network for GNSS-R wind speed retrieval and its interpretation

遥感 全球导航卫星系统应用 残余物 口译(哲学) 计算机科学 风速 环境科学 地质学 气象学 全球定位系统 电信 地理 算法 程序设计语言
作者
Hao Du,Weiqiang Li,Estel Cardellach,Serni Ribó,A. Rius,Yang Nan
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:313: 114375-114375
标识
DOI:10.1016/j.rse.2024.114375
摘要

Global navigation satellite system reflectometry (GNSS-R) has emerged as a new technique to provide L-band bistatic measurements for ocean wind speed retrieval, in which traditional geophysical model functions (GMFs) or shallow neural networks (NNs) are normally used. However, it is still challenging to identify and consider all relevant parameters in the GMF. Meanwhile, NN models face limitations due to the degradation problem, which restricts their depth and consequently their performance. Furthermore, the interpretation of NN models for GNSS-R wind retrieval is another issue. To this end, we propose a residual fully connected network (RFCN) fusing auxiliary information such as geometry, receiver gain, significant wave height, and current speed with track-wise corrected σ0. Referred to the European Centre for Medium-Range Weather Forecast (ECMWF) ERA5 wind product, the root mean square error (RMSE) and bias of RFCN winds are 1.031 m/s and -0.0003 m/s, respectively, with a 6% improvement in RMSE compared to debiased NOAA Cyclone Global Navigation Satellite System (CYGNSS) Version 1.2 (V1.2) wind speed retrieval. Moreover, in an intertropical convergence zone (ITCZ) area with large current speeds, the RMSE and bias are 1.006 m/s and -0.022 m/s: an improvement of 11.6% and 87.9% compared to debiased NOAA CYGNSS V1.2 winds. The bias 'strips' in these areas are nearly eliminated. Daily averaged error analyses also demonstrate that RFCN winds are more robust and consistent with ECMWF winds. For wind speeds larger than 20 m/s, referred to Soil Moisture Active Passive (SMAP) Level 3 final wind products, the RMSE and bias of fine-tuning RFCN (FT_RFCN) winds are reduced by 25.7% and 91.5% compared to NOAA winds. Finally, the RMSE and bias of retrievals in tropical cyclones, measured by Stepped Frequency Microwave Radiometer (SFMR) during 2021-2022, reveal an improvement of 3.5% and 21.2% compared to NOAA winds. Through SHapley Additive exPlanations (SHAP) models developed for RFCN and FT_RFCN, the contribution of each feature is quantitatively evaluated, while providing insights into their interactions within the 'black-box' NN models with clear physical meanings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yry发布了新的文献求助10
1秒前
2秒前
4秒前
王绪威发布了新的文献求助10
4秒前
陈丹丹发布了新的文献求助10
5秒前
ZhouYW完成签到,获得积分10
7秒前
toda_erica完成签到,获得积分10
8秒前
tcx完成签到,获得积分10
8秒前
管夜白完成签到 ,获得积分10
9秒前
KEHUGE发布了新的文献求助30
9秒前
顾矜应助花痴的白筠采纳,获得10
9秒前
相龙发布了新的文献求助10
10秒前
11秒前
小黑喵应助王绪威采纳,获得20
12秒前
yar应助dagejing4055采纳,获得10
12秒前
12秒前
12秒前
万能图书馆应助yry采纳,获得10
14秒前
15秒前
16秒前
ninghan发布了新的文献求助10
16秒前
17秒前
18秒前
Rrr发布了新的文献求助10
18秒前
王绪威完成签到,获得积分20
20秒前
英俊的铭应助相龙采纳,获得10
20秒前
YDY完成签到,获得积分10
21秒前
CipherSage应助KEHUGE采纳,获得10
22秒前
24秒前
24秒前
化合物来完成签到,获得积分10
25秒前
独徙发布了新的文献求助10
26秒前
欣喜紫真完成签到,获得积分10
27秒前
27秒前
毛豆应助和谐的果汁采纳,获得30
28秒前
科目三应助hetao286采纳,获得10
29秒前
大雯仔发布了新的文献求助10
29秒前
plasticsci关注了科研通微信公众号
30秒前
33秒前
爆米花应助pla采纳,获得10
35秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463119
求助须知:如何正确求助?哪些是违规求助? 3056538
关于积分的说明 9052742
捐赠科研通 2746421
什么是DOI,文献DOI怎么找? 1506925
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695791