Curriculum Learning Empowered Reinforcement Learning for Graph-based Portfolio Management: Performance Optimization and Comprehensive Analysis

强化学习 计算机科学 机器学习 人工智能 图形 课程 理论计算机科学 心理学 教育学
作者
Abdullah Ali Salamai
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106537-106537 被引量:1
标识
DOI:10.1016/j.neunet.2024.106537
摘要

Portfolio management (PM) is a popular financial process that concerns the occasional reallocation of a particular quantity of capital into a portfolio of assets, with the main aim of maximizing profitability conditioned to a certain level of risk. Given the inherent dynamicity of stock exchanges and development for long-term performance, reinforcement learning (RL) has become a dominating solution for solving the problem of portfolio management in an automated and efficient manner. Nevertheless, the present RL-based PM methods just take into account the variations in prices of portfolio assets and the implications of price variations, while overlooking the significant relationships among different assets in the market, which are extremely valuable for managerial decisions. To close this gap, this paper introduces a novel deep model that combines two subnetworks; one to learn a temporal representation of historical prices using a refined temporal learner, while the other learns the relationships between different stocks in the market using a relation graph learner (RGL). Then, the above learners are integrated into the curriculum RL scheme for formulating the PM as a curriculum Markov Decision Process, in which an adaptive curriculum policy is presented to enable the agent to adaptively minimize risk value and maximize cumulative return. Proof-of-concept experiments are performed on data from three public stock indices (namely S&P500, NYSE, and NASDAQ), and the results demonstrate the efficiency of the proposed framework in improving the portfolio management performance over the competing RL solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
游尘发布了新的文献求助10
1秒前
bkagyin应助zhaowenxian采纳,获得10
1秒前
水电费第三方完成签到,获得积分20
2秒前
斯文败类应助lalala采纳,获得10
2秒前
小王爱看文献完成签到,获得积分10
3秒前
李明完成签到,获得积分10
3秒前
酷波er应助Khr1stINK采纳,获得10
4秒前
cora发布了新的文献求助10
4秒前
shelly0621发布了新的文献求助10
4秒前
中华有为发布了新的文献求助10
4秒前
特兰克斯发布了新的文献求助10
4秒前
Ares完成签到,获得积分10
5秒前
5秒前
在水一方应助garyaa采纳,获得10
5秒前
DAN_完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助屹舟采纳,获得10
6秒前
科研通AI5应助一一采纳,获得10
7秒前
隐形的紫菜完成签到,获得积分10
7秒前
23132发布了新的文献求助10
8秒前
cora完成签到,获得积分10
9秒前
放眼天下完成签到 ,获得积分10
10秒前
文毛完成签到,获得积分10
10秒前
10秒前
11秒前
兴奋的问旋完成签到,获得积分10
11秒前
张张完成签到,获得积分10
11秒前
陈文学完成签到,获得积分10
12秒前
一一发布了新的文献求助10
12秒前
bkagyin应助潇洒的冷玉采纳,获得10
13秒前
通~发布了新的文献求助10
13秒前
13秒前
芒果完成签到,获得积分10
13秒前
14秒前
cly3397完成签到,获得积分10
14秒前
开心发布了新的文献求助10
14秒前
14秒前
少年发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794