Curriculum Learning Empowered Reinforcement Learning for Graph-based Portfolio Management: Performance Optimization and Comprehensive Analysis

强化学习 计算机科学 机器学习 人工智能 图形 课程 理论计算机科学 心理学 教育学
作者
Abdullah Ali Salamai
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106537-106537 被引量:1
标识
DOI:10.1016/j.neunet.2024.106537
摘要

Portfolio management (PM) is a popular financial process that concerns the occasional reallocation of a particular quantity of capital into a portfolio of assets, with the main aim of maximizing profitability conditioned to a certain level of risk. Given the inherent dynamicity of stock exchanges and development for long-term performance, reinforcement learning (RL) has become a dominating solution for solving the problem of portfolio management in an automated and efficient manner. Nevertheless, the present RL-based PM methods just take into account the variations in prices of portfolio assets and the implications of price variations, while overlooking the significant relationships among different assets in the market, which are extremely valuable for managerial decisions. To close this gap, this paper introduces a novel deep model that combines two subnetworks; one to learn a temporal representation of historical prices using a refined temporal learner, while the other learns the relationships between different stocks in the market using a relation graph learner (RGL). Then, the above learners are integrated into the curriculum RL scheme for formulating the PM as a curriculum Markov Decision Process, in which an adaptive curriculum policy is presented to enable the agent to adaptively minimize risk value and maximize cumulative return. Proof-of-concept experiments are performed on data from three public stock indices (namely S&P500, NYSE, and NASDAQ), and the results demonstrate the efficiency of the proposed framework in improving the portfolio management performance over the competing RL solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lh大号发布了新的文献求助10
1秒前
老阶梯完成签到,获得积分10
1秒前
1秒前
高兴微笑完成签到,获得积分10
2秒前
xiao123789完成签到,获得积分10
3秒前
KleinFC应助不问悲欢采纳,获得10
4秒前
lii完成签到,获得积分20
4秒前
5秒前
端庄的煎蛋完成签到,获得积分10
6秒前
丘比特应助无私的颤采纳,获得10
6秒前
lq1024424完成签到,获得积分10
6秒前
快乐的莆发布了新的文献求助10
6秒前
跳跃碧灵完成签到,获得积分10
9秒前
明理的幻悲完成签到,获得积分10
9秒前
无花果应助咖喱鸡采纳,获得10
9秒前
饱满老鼠应助红泥小火炉采纳,获得10
10秒前
10秒前
铮铮发布了新的文献求助10
10秒前
陈宗琴发布了新的文献求助20
10秒前
铁观音完成签到,获得积分10
12秒前
思源应助小王采纳,获得10
13秒前
健忘丹珍完成签到,获得积分10
14秒前
lii发布了新的文献求助30
14秒前
完美世界应助甜槠猪采纳,获得10
14秒前
端庄白猫完成签到,获得积分10
15秒前
15秒前
dingbeicn完成签到,获得积分10
19秒前
英俊的铭应助阿翼采纳,获得10
20秒前
李健应助历史真相采纳,获得10
22秒前
英俊的铭应助asdfqwer采纳,获得10
22秒前
橓顺发布了新的文献求助10
22秒前
852应助星星采纳,获得10
23秒前
tjj完成签到,获得积分10
24秒前
24秒前
28秒前
siuu完成签到 ,获得积分10
29秒前
咖喱鸡发布了新的文献求助10
29秒前
29秒前
闪闪可乐完成签到,获得积分10
30秒前
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262967
求助须知:如何正确求助?哪些是违规求助? 2903657
关于积分的说明 8326071
捐赠科研通 2573529
什么是DOI,文献DOI怎么找? 1398397
科研通“疑难数据库(出版商)”最低求助积分说明 654153
邀请新用户注册赠送积分活动 632707