Himalayan orogeny and consequent climatic changes, such as the strengthening of the Asian monsoon, are considered as two main drivers in shaping local biogeography. The mountainous Sinopoda spiders, which are widely distributed in East Asia and Southeast Asia and especially abundant in the mountains near the Himalayas, represent an ideal model lineage for investigating Himalayan biogeography. This is due to their high diversity, limited dispersal ability, and wide elevational distribution, ranging from sea level up to 3500 meters. We investigated the evolutionary history of Sinopoda spiders, focusing on ecological, molecular, and morphological traits in relation to local geological events and fluctuations in Neogene (23.0–2.6 Ma) Asian monsoon patterns. Distribution modeling results show that extant Sinopoda spiders are sensitive to humidity fluctuations. They are mainly distributed in two distinct habitats: areas with moderate precipitation at high altitude (relatively cold) and areas with high precipitation at low altitude (relatively warm). The biogeographical and elevation reconstruction analyses show that as the Himalayas rose and the Asian monsoon intensified, Sinopoda spiders (Sparassidae: Heteropodinae) moved out of the Himalayas (ca 18.1 Ma) then ‘down' the rising mountain slopes (ca 9.6 Ma). We then see a secondary return to the mountains (ca 3.3 Ma) as the severity of the East Asian monsoon decreased. We hypothesize that our ‘out of Himalaya' dispersal pattern hypothesis will also apply to closely related spider groups with limited ballooning ability (e.g. Lycosidae, Thomisidae) or other organisms with low vagility (such as herpetofauna) that are sensitive to humidity and possess similar geographical distributions.