脂质体
吉西他滨
热疗
聚乙二醇
化学
体内
生物物理学
材料科学
生物化学
化疗
医学
内科学
生物
生物技术
作者
Cesar B. Aparicio-Lopez,Sarah A. Timmerman,Giulia Lorino,Trevor Rogers,Marla Pyle,Tej B. Shrestha,Matthew T. Basel
出处
期刊:Cancers
[MDPI AG]
日期:2024-09-01
卷期号:16 (17): 3048-3048
标识
DOI:10.3390/cancers16173048
摘要
Treatment of pancreatic ductal adenocarcinoma with gemcitabine is limited by an increased desmoplasia, poor vascularization, and short plasma half-life. Heat-sensitive liposomes modified by polyethylene glycol (PEG; PEGylated liposomes) can increase plasma stability, reduce clearance, and decrease side effects. Nevertheless, translation of heat-sensitive liposomes to the clinic has been hindered by the low loading efficiency of gemcitabine and by the difficulty of inducing hyperthermia in vivo. This study was designed to investigate the effect of phospholipid content on the stability of liposomes at 37 °C and their release under hyperthermia conditions; this was accomplished by employing a two-stage heating approach. First the liposomes were heated at a fast rate, then they were transferred to a holding bath. Thermosensitive liposomes formulated with DPPC: DSPC: PEG2k (80:15:5, mole%) exhibited minimal release of carboxyfluorescein at 37 °C over 30 min, indicating stability under physiological conditions. However, upon exposure to hyperthermic conditions (43 °C and 45 °C), these liposomes demonstrated a rapid and significant release of their encapsulated content. The encapsulation efficiency for gemcitabine was calculated at 16.9%. Additionally, fluorescent analysis during the removal of unencapsulated gemcitabine revealed an increase in pH. In vitro tests with BxPC3 and KPC cell models showed that these thermosensitive liposomes induced a heat-dependent cytotoxic effect comparable to free gemcitabine at temperatures above 41 °C. This study highlights the effectiveness of the heating mechanism and cell models in understanding the current challenges in developing gemcitabine-loaded heat-sensitive liposomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI