STD-YOLOv8: A lightweight small target detection algorithm for UAV perspectives

计算机科学 增采样 联营 特征(语言学) 算法 卷积神经网络 模式识别(心理学) 特征学习 人工智能 代表(政治) 水准点(测量) 图像(数学) 哲学 语言学 大地测量学 政治 政治学 法学 地理
作者
Dong Wu,J. W. Li,Weijiang Yang
出处
期刊:Electronic research archive [American Institute of Mathematical Sciences]
卷期号:32 (7): 4563-4580
标识
DOI:10.3934/era.2024207
摘要

<p>When recognizing targets by unmanned aerial vehicles (UAVs), problems such as small size, dense dispersion, and complex background are likely to occur, resulting in low recognition rates. In order to solve the above problems, this work proposed a lightweight small target detection algorithm based on the YOLOv8n: STD-YOLOv8 algorithm. First, the regression problem of small targets in different training periods was optimized, the penalty term in the original loss was improved, and a new LIoU loss function was proposed, so that the size of the penalty term could be dynamically adjusted before and after training, thus improving the performance of the algorithm. Second, in order to better adapt to the small target scale and enhance the ability of small target feature acquisition, the SPD-Conv module was integrated in the backbone network, replacing the original stepwise convolutional layer and pooling layer, so as to solve the problems of loss of fine-grained information and low efficiency of feature representation existing in the current convolutional neural network (CNN) structure. In the neck part, nearest-neighbor upsampling was replaced by the feature reassembly assembly of features operator CARAFE (content-aware reassembly of features), which enabled the model to aggregate contextual information in a larger perceptual field and enhanced the feature representation in the neck. Finally, validation experiments were conducted by comparing different algorithms under the same VisDrone-2021 dataset. The results of the ablation experiments show that the algorithms proposed in this thesis have improved the recall (R), mAP50, and mAP95 by 4.7, 5.8 and 5.7%, respectively, compared with YOLOv8n. The results of the model generalization experiments on the TinyPerson dataset show that the algorithm in this paper has superior small target detection performance with only 1.2 M model parameters (1 M = 10<sup>6</sup>).</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
无花果应助pan采纳,获得10
3秒前
小蘑菇应助小白菜采纳,获得10
4秒前
5秒前
LYY完成签到,获得积分10
5秒前
华仔应助hello采纳,获得10
5秒前
Luisa完成签到,获得积分10
6秒前
6秒前
含糊的金鱼完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
8秒前
akjsi发布了新的文献求助10
10秒前
科研通AI2S应助Cassio采纳,获得10
10秒前
11秒前
苏书白应助洋芋采纳,获得10
12秒前
fuiee发布了新的文献求助10
12秒前
小叶不吃香菜完成签到,获得积分10
13秒前
14秒前
14秒前
18秒前
pan发布了新的文献求助10
18秒前
Owen应助温暖寻雪采纳,获得10
18秒前
sail完成签到,获得积分10
18秒前
kiseki完成签到 ,获得积分10
21秒前
21秒前
21秒前
22秒前
研友_诺发布了新的文献求助10
23秒前
冷酷非笑完成签到,获得积分10
23秒前
今后应助sail采纳,获得20
24秒前
乐乐应助肖恩采纳,获得10
26秒前
小宇宙完成签到 ,获得积分10
26秒前
冷酷非笑发布了新的文献求助10
27秒前
dd完成签到 ,获得积分10
30秒前
今后应助研友_诺采纳,获得10
31秒前
bkagyin应助爱听歌笑寒采纳,获得10
32秒前
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149266
求助须知:如何正确求助?哪些是违规求助? 2800354
关于积分的说明 7839707
捐赠科研通 2457979
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706