Evidence‐Based Potential of Generative Artificial Intelligence Large Language Models on Dental Avulsion: ChatGPT Versus Gemini

撕脱 考试(生物学) 牙撕脱 医学 数学教育 牙科 心理学 外科 生物 古生物学
作者
Taibe Tokgöz Kaplan,Muhammet Cankar
出处
期刊:Dental Traumatology [Wiley]
被引量:4
标识
DOI:10.1111/edt.12999
摘要

ABSTRACT Background In this study, the accuracy and comprehensiveness of the answers given to questions about dental avulsion by two artificial intelligence‐based language models, ChatGPT and Gemini, were comparatively evaluated. Materials and Methods Based on the guidelines of the International Society of Dental Traumatology, a total of 33 questions were prepared, including multiple‐choice questions, binary questions, and open‐ended questions as technical questions and patient questions about dental avulsion. They were directed to ChatGPT and Gemini. Responses were recorded and scored by four pediatric dentists. Statistical analyses, including ICC analysis, were performed to determine the agreement and accuracy of the responses. The significance level was set as p < 0.050. Results The mean score of the Gemini model was statistically significantly higher than the ChatGPT ( p = 0.001). ChatGPT gave more correct answers to open‐ended questions and T/F questions on dental avulsion; it showed the lowest accuracy in the MCQ section. There was no significant difference between the responses of the Gemini model to different types of questions on dental avulsion and the median scores ( p = 0.088). ChatGPT and Gemini were analyzed with the Mann–Whitney U test without making a distinction between question types, and Gemini answers were found to be statistically significantly more accurate ( p = 0.004). Conclusions The Gemini and ChatGPT language models based on the IADT guideline for dental avulsion undoubtedly show promise. To guarantee the successful incorporation of LLMs into practice, it is imperative to conduct additional research, clinical validation, and improvements to the models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
叶公子完成签到,获得积分10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
超级幼旋应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得10
2秒前
xinyun应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Dali应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
小马完成签到,获得积分10
2秒前
王忘汪发布了新的文献求助10
2秒前
田様应助Asteroid采纳,获得30
4秒前
li发布了新的文献求助10
4秒前
令和发布了新的文献求助10
4秒前
ru发布了新的文献求助30
4秒前
背后的雪卉应助zt采纳,获得10
5秒前
Ava应助酷酷云朵采纳,获得10
5秒前
996755发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354