Evidence‐Based Potential of Generative Artificial Intelligence Large Language Models on Dental Avulsion: ChatGPT Versus Gemini

撕脱 考试(生物学) 牙撕脱 医学 数学教育 牙科 心理学 外科 古生物学 生物
作者
Taibe Tokgöz Kaplan,Muhammet Cankar
出处
期刊:Dental Traumatology [Wiley]
标识
DOI:10.1111/edt.12999
摘要

ABSTRACT Background In this study, the accuracy and comprehensiveness of the answers given to questions about dental avulsion by two artificial intelligence‐based language models, ChatGPT and Gemini, were comparatively evaluated. Materials and Methods Based on the guidelines of the International Society of Dental Traumatology, a total of 33 questions were prepared, including multiple‐choice questions, binary questions, and open‐ended questions as technical questions and patient questions about dental avulsion. They were directed to ChatGPT and Gemini. Responses were recorded and scored by four pediatric dentists. Statistical analyses, including ICC analysis, were performed to determine the agreement and accuracy of the responses. The significance level was set as p < 0.050. Results The mean score of the Gemini model was statistically significantly higher than the ChatGPT ( p = 0.001). ChatGPT gave more correct answers to open‐ended questions and T/F questions on dental avulsion; it showed the lowest accuracy in the MCQ section. There was no significant difference between the responses of the Gemini model to different types of questions on dental avulsion and the median scores ( p = 0.088). ChatGPT and Gemini were analyzed with the Mann–Whitney U test without making a distinction between question types, and Gemini answers were found to be statistically significantly more accurate ( p = 0.004). Conclusions The Gemini and ChatGPT language models based on the IADT guideline for dental avulsion undoubtedly show promise. To guarantee the successful incorporation of LLMs into practice, it is imperative to conduct additional research, clinical validation, and improvements to the models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mimimi完成签到,获得积分10
4秒前
pcx完成签到,获得积分10
5秒前
Parotodus发布了新的文献求助10
8秒前
老肖应助ll采纳,获得10
9秒前
Lili关注了科研通微信公众号
10秒前
zzz完成签到 ,获得积分10
14秒前
sxy完成签到,获得积分10
14秒前
vvv发布了新的文献求助20
14秒前
17秒前
蓝桉完成签到 ,获得积分10
20秒前
20秒前
Ymir发布了新的文献求助10
20秒前
21秒前
Parotodus完成签到,获得积分10
22秒前
24秒前
黑暗与黎明完成签到 ,获得积分10
26秒前
胡萝卜icc完成签到,获得积分10
26秒前
小二郎应助DreamRunner0410采纳,获得10
26秒前
27秒前
黄文博完成签到 ,获得积分10
27秒前
28秒前
单纯一刀关注了科研通微信公众号
28秒前
bkagyin应助dingm2采纳,获得10
29秒前
30秒前
Yilam发布了新的文献求助10
33秒前
35秒前
36秒前
科研小白完成签到 ,获得积分10
37秒前
桐桐应助luofeiyu采纳,获得10
38秒前
ltx完成签到,获得积分20
39秒前
40秒前
40秒前
41秒前
在水一方应助sxy采纳,获得10
41秒前
41秒前
狂野代真发布了新的文献求助50
43秒前
43秒前
vvv完成签到,获得积分10
44秒前
HuSP完成签到,获得积分10
45秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791216
关于积分的说明 7798259
捐赠科研通 2447643
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194