Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production

石墨氮化碳 光催化 过氧化氢 氮化碳 制氢 材料科学 氮化物 碳纤维 生产(经济) 环境科学 化学 纳米技术 催化作用 复合材料 复合数 有机化学 图层(电子) 经济 宏观经济学 生物化学
作者
Tengyang Gao,Degui Zhao,Sàisài Yuán,Ming Zheng,Xianjuan Pu,Liang Tang,Zhendong Lei
出处
期刊:Carbon energy [Wiley]
被引量:2
标识
DOI:10.1002/cey2.596
摘要

Abstract Hydrogen peroxide (H 2 O 2 ) is one of the 100 most important chemicals in the world with high energy density and environmental friendliness. Compared with anthraquinone oxidation, direct synthesis of H 2 O 2 with hydrogen (H 2 ) and oxygen (O 2 ), and electrochemical methods, photocatalysis has the characteristics of low energy consumption, easy operation and less pollution, and broad application prospects in H 2 O 2 generation. Various photocatalysts, such as titanium dioxide (TiO 2 ), graphitic carbon nitride (g‐C 3 N 4 ), metal‐organic materials, and nonmetallic materials, have been studied for H 2 O 2 production. Among them, g‐C 3 N 4 materials, which are simple to synthesize and functionalize, have attracted wide attention. The electronic band structure of g‐C 3 N 4 shows a bandgap of 2.77 eV, a valence band maximum of 1.44 V, and a conduction band minimum of −1.33 V, which theoretically meets the requirements for hydrogen peroxide production. In comparison to semiconductor materials like TiO 2 (3.2 eV), this material has a smaller bandgap, which results in a more efficient response to visible light. However, the photocatalytic activity of g‐C 3 N 4 and the yield of H 2 O 2 were severely inhibited by the electron‐hole pair with high recombination rate, low utilization rate of visible light, and poor selectivity of products. Although previous reviews also presented various strategies to improve photocatalytic H 2 O 2 production, they did not systematically elaborate the inherent relationship between the control strategies and their energy band structure. From this point of view, this article focuses on energy band engineering and reviews the latest research progress of g‐C 3 N 4 photocatalytic H 2 O 2 production. On this basis, a strategy to improve the H 2 O 2 production by g‐C 3 N 4 photocatalysis is proposed through morphology control, crystallinity and defect, and doping, combined with other materials and other strategies. Finally, the challenges and prospects of industrialization of g‐C 3 N 4 photocatalytic H 2 O 2 production are discussed and envisioned.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jj完成签到,获得积分10
1秒前
喵喵完成签到,获得积分10
2秒前
顺心绮兰完成签到,获得积分10
2秒前
Rez完成签到,获得积分10
2秒前
心木完成签到 ,获得积分10
2秒前
coco在纠结发布了新的文献求助10
2秒前
3秒前
小木虫完成签到,获得积分10
3秒前
Jasper应助ramu采纳,获得10
3秒前
jackish完成签到,获得积分10
3秒前
zcg发布了新的文献求助10
4秒前
ask完成签到,获得积分10
4秒前
领导范儿应助奋斗的荆采纳,获得10
4秒前
hululu完成签到 ,获得积分10
4秒前
6秒前
6秒前
在水一方应助Luyao采纳,获得10
6秒前
fanfan完成签到,获得积分10
6秒前
小人物完成签到,获得积分10
7秒前
medzhou完成签到,获得积分10
8秒前
英俊的铭应助眰恦采纳,获得10
9秒前
勤劳野狼发布了新的文献求助10
9秒前
9秒前
lilian完成签到,获得积分10
10秒前
华仔应助果果采纳,获得10
10秒前
小蘑菇应助果果采纳,获得10
10秒前
善学以致用应助果果采纳,获得10
10秒前
娇气的春天完成签到 ,获得积分10
11秒前
马里奥发布了新的文献求助10
11秒前
11秒前
忧伤的元菱完成签到,获得积分10
11秒前
草上飞完成签到 ,获得积分10
12秒前
ramu完成签到,获得积分10
13秒前
操所有人完成签到,获得积分10
13秒前
潘妮花花完成签到 ,获得积分10
14秒前
一叶舟完成签到 ,获得积分10
14秒前
Fei发布了新的文献求助10
14秒前
爱吃葡萄的老师完成签到,获得积分10
14秒前
FUTURE发布了新的文献求助10
15秒前
勤劳野狼完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099914
求助须知:如何正确求助?哪些是违规求助? 2751373
关于积分的说明 7613446
捐赠科研通 2403368
什么是DOI,文献DOI怎么找? 1275253
科研通“疑难数据库(出版商)”最低求助积分说明 616318
版权声明 599053