亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning‐based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models

无线电技术 接收机工作特性 逻辑回归 医学 特征选择 人工智能 机器学习 膀胱癌 阶段(地层学) 特征(语言学) 放射科 计算机科学 癌症 内科学 古生物学 语言学 哲学 生物
作者
Situ Xiong,Zhehong Fu,Zhikang Deng,Sheng Li,Xiangpeng Zhan,Fu‐Chun Zheng,Hailang Yang,Xiaoqiang Liu,Songhui Xu,Hao Liu,Bing Fan,Wentao Dong,Yanping Song,Bin Fu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (9): 5965-5977 被引量:10
标识
DOI:10.1002/mp.17288
摘要

Abstract Background Predicting the accurate preoperative staging of bladder cancer (BLCA), which markedly affects treatment decisions and patient outcomes, using traditional clinical parameters is challenging. Nevertheless, emerging studies in radiomics, especially machine learning‐based computed tomography (CT) image‐based radiomics, hold promise in improving stage prediction accuracy in various tumors. However, the comparative performance and clinical utility of models for BLCA are under investigation. Purpose We aimed to investigate the application value of machine learning‐based CT radiomics in preoperative staging prediction by comparing the performance of clinical, radiomics, and clinical–radiomics combined models. Methods A retrospective cohort of 105 patients with initial BLCA was randomized into training (70%) and testing (30%) cohorts. Radiomics features were extracted from CT images using the optimal feature filter, followed by the application of the least absolute shrinkage and selection operator algorithm for optimum feature selection. Furthermore, machine learning algorithms were used to establish a radiomics model within the training cohort. Independent risk factors for muscle‐invasive BLCA (MIBC) obtained by multivariate logistic regression (LR) analysis were separately used to construct a clinical model. For a clinical–radiomics fusion model, radiomics features were combined with clinical parameters. Performance was evaluated based on receiver operating characteristic curves, calibration curves, decision curve analysis (DCA), and standard performance metrics. Results Patients exhibited a significantly higher age ( p = 0.029), larger tumor size ( p = 0.01), and an increased neutrophil‐to‐lymphocyte ratio (NLR; p = 0.045) in the MIBC group than in the NMIBC group. LR analysis revealed age ( p = 0.026), tumor size ( p = 0.007), and NLR ( p = 0.019) as significant predictors for constructing the clinical model. In the testing cohort, the radiomics model, which used an Support Vector Machine classifier, achieved the highest area under the curve (AUC) value of 0.857. The clinical–radiomics model outperformed the remaining two models, with AUC values of 0.958 and 0.893 in the training and testing cohorts, respectively. DeLong's test indicated significant differences between the three models. Calibration curves showed good agreement, and DCA confirmed the superior clinical utility of the clinical–radiomics model. Conclusions Machine learning‐based CT radiomics combined with clinical parameters was a promising approach in staging BLCA accurately, which outperformed the individual models. Integrating radiomics features with clinical information holds the potential to improve personalized treatment planning and patient outcomes in BLCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰姗完成签到,获得积分10
29秒前
聪聪发布了新的文献求助10
31秒前
34秒前
Able完成签到,获得积分10
37秒前
sun发布了新的文献求助10
39秒前
1分钟前
1分钟前
Ecokarster完成签到,获得积分10
1分钟前
楚楚完成签到 ,获得积分10
1分钟前
所所应助鳄鱼不做饿梦采纳,获得50
1分钟前
111完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
田様应助郭楠楠采纳,获得30
2分钟前
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
郭楠楠发布了新的文献求助30
3分钟前
3分钟前
Xyyy完成签到,获得积分10
3分钟前
RED发布了新的文献求助10
3分钟前
满天星发布了新的文献求助10
4分钟前
4分钟前
郭楠楠发布了新的文献求助10
4分钟前
缨绒完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
满天星完成签到 ,获得积分10
5分钟前
zqr发布了新的文献求助10
5分钟前
Hello应助Raunio采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
abdo完成签到,获得积分10
6分钟前
kuoping完成签到,获得积分0
6分钟前
小蘑菇应助成太采纳,获得10
6分钟前
万能图书馆应助zxl采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
郭楠楠发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861425
关于积分的说明 15107679
捐赠科研通 4823016
什么是DOI,文献DOI怎么找? 2581850
邀请新用户注册赠送积分活动 1536017
关于科研通互助平台的介绍 1494385