Machine learning‐based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models

无线电技术 接收机工作特性 逻辑回归 医学 特征选择 人工智能 机器学习 膀胱癌 阶段(地层学) 特征(语言学) 放射科 计算机科学 癌症 内科学 古生物学 语言学 哲学 生物
作者
Situ Xiong,Zhehong Fu,Zhikang Deng,Sheng Li,Xiangpeng Zhan,Fu‐Chun Zheng,Hailang Yang,Xiaoqiang Liu,Songhui Xu,Hao Liu,Bing Fan,Wentao Dong,Yanping Song,Bin Fu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (9): 5965-5977 被引量:10
标识
DOI:10.1002/mp.17288
摘要

Abstract Background Predicting the accurate preoperative staging of bladder cancer (BLCA), which markedly affects treatment decisions and patient outcomes, using traditional clinical parameters is challenging. Nevertheless, emerging studies in radiomics, especially machine learning‐based computed tomography (CT) image‐based radiomics, hold promise in improving stage prediction accuracy in various tumors. However, the comparative performance and clinical utility of models for BLCA are under investigation. Purpose We aimed to investigate the application value of machine learning‐based CT radiomics in preoperative staging prediction by comparing the performance of clinical, radiomics, and clinical–radiomics combined models. Methods A retrospective cohort of 105 patients with initial BLCA was randomized into training (70%) and testing (30%) cohorts. Radiomics features were extracted from CT images using the optimal feature filter, followed by the application of the least absolute shrinkage and selection operator algorithm for optimum feature selection. Furthermore, machine learning algorithms were used to establish a radiomics model within the training cohort. Independent risk factors for muscle‐invasive BLCA (MIBC) obtained by multivariate logistic regression (LR) analysis were separately used to construct a clinical model. For a clinical–radiomics fusion model, radiomics features were combined with clinical parameters. Performance was evaluated based on receiver operating characteristic curves, calibration curves, decision curve analysis (DCA), and standard performance metrics. Results Patients exhibited a significantly higher age ( p = 0.029), larger tumor size ( p = 0.01), and an increased neutrophil‐to‐lymphocyte ratio (NLR; p = 0.045) in the MIBC group than in the NMIBC group. LR analysis revealed age ( p = 0.026), tumor size ( p = 0.007), and NLR ( p = 0.019) as significant predictors for constructing the clinical model. In the testing cohort, the radiomics model, which used an Support Vector Machine classifier, achieved the highest area under the curve (AUC) value of 0.857. The clinical–radiomics model outperformed the remaining two models, with AUC values of 0.958 and 0.893 in the training and testing cohorts, respectively. DeLong's test indicated significant differences between the three models. Calibration curves showed good agreement, and DCA confirmed the superior clinical utility of the clinical–radiomics model. Conclusions Machine learning‐based CT radiomics combined with clinical parameters was a promising approach in staging BLCA accurately, which outperformed the individual models. Integrating radiomics features with clinical information holds the potential to improve personalized treatment planning and patient outcomes in BLCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝色斑马发布了新的文献求助10
刚刚
Air发布了新的文献求助10
1秒前
Naomi完成签到,获得积分10
2秒前
CipherSage应助宝安采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
WBN9264发布了新的文献求助30
2秒前
2秒前
123完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
5秒前
5秒前
小汁儿发布了新的文献求助10
6秒前
大个应助嘻嘻哈哈眼药水采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
蓝星月发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
fine发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
kobeliu发布了新的文献求助10
11秒前
Eloise关注了科研通微信公众号
11秒前
完美世界应助秋殤采纳,获得10
11秒前
药学完成签到 ,获得积分10
11秒前
11秒前
燕yy完成签到,获得积分10
12秒前
12秒前
李卓航发布了新的文献求助10
12秒前
北极星发布了新的文献求助10
13秒前
13秒前
jia发布了新的文献求助50
13秒前
14秒前
LingLu发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712999
求助须知:如何正确求助?哪些是违规求助? 5213045
关于积分的说明 15269140
捐赠科研通 4864791
什么是DOI,文献DOI怎么找? 2611645
邀请新用户注册赠送积分活动 1561939
关于科研通互助平台的介绍 1519153