Developing a calculable risk prediction model for sternal wound infection after median sternotomy: a retrospective study

医学 回顾性队列研究 胸骨正中切开术 伤口感染 外科 急诊医学
作者
Yang Chen,Fang He,J. Chen,Xiaolong Hu,Wanfu Zhang,Shaohui Li,Hao Zhang,Weixun Duan,Hao Guan
出处
期刊:Burns & Trauma [Oxford University Press]
卷期号:12
标识
DOI:10.1093/burnst/tkae031
摘要

Abstract Background Diagnosing sternal wound infection (SWI) following median sternotomy remains laborious and troublesome, resulting in high mortality rates and great harm to patients. Early intervention and prevention are critical and challenging. This study aimed to develop a simple risk prediction model to identify high-risk populations of SWI and to guide examination programs and intervention strategies. Methods A retrospective analysis was conducted on the clinical data obtained from 6715 patients who underwent median sternotomy between January 2016 and December 2020. The least absolute shrink and selection operator (LASSO) regression method selected the optimal subset of predictors, and multivariate logistic regression helped screen the significant factors. The nomogram model was built based on all significant factors. Area under the curve (AUC), calibration curve and decision curve analysis (DCA) were used to assess the model's performance. Results LASSO regression analysis selected an optimal subset containing nine predictors that were all statistically significant in multivariate logistic regression analysis. Independent risk factors of SWI included female [odds ratio (OR) = 3.405, 95% confidence interval (CI) = 2.535–4.573], chronic obstructive pulmonary disease (OR = 4.679, 95% CI = 2.916–7.508), drinking (OR = 2.025, 95% CI = 1.437–2.855), smoking (OR = 7.059, 95% CI = 5.034–9.898), re-operation (OR = 3.235, 95% CI = 1.087–9.623), heart failure (OR = 1.555, 95% CI = 1.200–2.016) and repeated endotracheal intubation (OR = 1.975, 95% CI = 1.405–2.774). Protective factors included bone wax (OR = 0.674, 95% CI = 0.538–0.843) and chest physiotherapy (OR = 0.446, 95% CI = 0.248–0.802). The AUC of the nomogram was 0.770 (95% CI = 0.745–0.795) with relatively good sensitivity (0.798) and accuracy (0.620), exhibiting moderately good discernment. The model also showed an excellent fitting degree on the calibration curve. Finally, the DCA presented a remarkable net benefit. Conclusions A visual and convenient nomogram-based risk calculator built on disease-associated predictors might help clinicians with the early identification of high-risk patients of SWI and timely intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山茶发布了新的文献求助10
刚刚
Bruce发布了新的文献求助10
1秒前
CC发布了新的文献求助10
1秒前
2秒前
所所应助冷酷的玉米采纳,获得10
2秒前
3秒前
伯赏满天发布了新的文献求助150
3秒前
3秒前
4秒前
学术达人应助whatever采纳,获得200
4秒前
方东发布了新的文献求助30
5秒前
上官若男应助乌江上次采纳,获得10
6秒前
搜集达人应助活泼洙采纳,获得10
6秒前
赫幼蓉完成签到,获得积分10
7秒前
7秒前
Rondab应助心杨采纳,获得10
7秒前
Moke发布了新的文献求助10
8秒前
苹果鸭子发布了新的文献求助10
9秒前
在水一方应助开心超人采纳,获得10
9秒前
两个我发布了新的文献求助10
10秒前
12345完成签到,获得积分10
10秒前
CC完成签到,获得积分10
10秒前
乌江上次完成签到,获得积分10
11秒前
所所应助木直采纳,获得30
14秒前
陈宇发布了新的文献求助10
14秒前
bluueboom完成签到,获得积分20
15秒前
追寻冰淇淋给yang123的求助进行了留言
15秒前
16秒前
顾矜应助西灵壹采纳,获得10
17秒前
田様应助恬恬采纳,获得10
17秒前
山茶完成签到,获得积分20
19秒前
19秒前
隐形曼青应助猪猪hero采纳,获得10
19秒前
wangliang0329完成签到,获得积分10
19秒前
呐呐呐完成签到 ,获得积分10
20秒前
20秒前
20秒前
852应助龙韵采纳,获得10
20秒前
情怀应助CRUISE采纳,获得10
21秒前
dingding发布了新的文献求助30
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771