Developing a calculable risk prediction model for sternal wound infection after median sternotomy: a retrospective study

医学 回顾性队列研究 胸骨正中切开术 伤口感染 外科 急诊医学
作者
Yang Chen,Fang He,J. Chen,Xiaolong Hu,Wanfu Zhang,Shaohui Li,Hao Zhang,Weixun Duan,Hao Guan
出处
期刊:Burns & Trauma [Oxford University Press]
卷期号:12
标识
DOI:10.1093/burnst/tkae031
摘要

Abstract Background Diagnosing sternal wound infection (SWI) following median sternotomy remains laborious and troublesome, resulting in high mortality rates and great harm to patients. Early intervention and prevention are critical and challenging. This study aimed to develop a simple risk prediction model to identify high-risk populations of SWI and to guide examination programs and intervention strategies. Methods A retrospective analysis was conducted on the clinical data obtained from 6715 patients who underwent median sternotomy between January 2016 and December 2020. The least absolute shrink and selection operator (LASSO) regression method selected the optimal subset of predictors, and multivariate logistic regression helped screen the significant factors. The nomogram model was built based on all significant factors. Area under the curve (AUC), calibration curve and decision curve analysis (DCA) were used to assess the model's performance. Results LASSO regression analysis selected an optimal subset containing nine predictors that were all statistically significant in multivariate logistic regression analysis. Independent risk factors of SWI included female [odds ratio (OR) = 3.405, 95% confidence interval (CI) = 2.535–4.573], chronic obstructive pulmonary disease (OR = 4.679, 95% CI = 2.916–7.508), drinking (OR = 2.025, 95% CI = 1.437–2.855), smoking (OR = 7.059, 95% CI = 5.034–9.898), re-operation (OR = 3.235, 95% CI = 1.087–9.623), heart failure (OR = 1.555, 95% CI = 1.200–2.016) and repeated endotracheal intubation (OR = 1.975, 95% CI = 1.405–2.774). Protective factors included bone wax (OR = 0.674, 95% CI = 0.538–0.843) and chest physiotherapy (OR = 0.446, 95% CI = 0.248–0.802). The AUC of the nomogram was 0.770 (95% CI = 0.745–0.795) with relatively good sensitivity (0.798) and accuracy (0.620), exhibiting moderately good discernment. The model also showed an excellent fitting degree on the calibration curve. Finally, the DCA presented a remarkable net benefit. Conclusions A visual and convenient nomogram-based risk calculator built on disease-associated predictors might help clinicians with the early identification of high-risk patients of SWI and timely intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenwen发布了新的文献求助10
刚刚
Damon发布了新的文献求助10
1秒前
1秒前
HCLonely应助dlfg采纳,获得10
3秒前
缓慢的博发布了新的文献求助10
3秒前
3秒前
爱76的5完成签到,获得积分10
3秒前
prince完成签到,获得积分10
4秒前
6秒前
buno应助专注若蕊采纳,获得10
7秒前
发疯的半仙完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
dyk完成签到,获得积分10
8秒前
10秒前
11秒前
LL发布了新的文献求助10
12秒前
望常桑完成签到,获得积分10
14秒前
14秒前
15秒前
Lucas应助可爱冰露采纳,获得10
15秒前
16秒前
超帅寒凡完成签到,获得积分20
17秒前
18秒前
18秒前
18秒前
wenwen完成签到,获得积分20
18秒前
Stephhen完成签到,获得积分10
19秒前
Dengbaly发布了新的文献求助10
19秒前
酷酷的锁发布了新的文献求助10
19秒前
CodeCraft应助江鹏采纳,获得10
20秒前
悦耳迎蕾发布了新的文献求助10
22秒前
习惯完成签到,获得积分20
24秒前
Freya发布了新的文献求助30
24秒前
江北小赵完成签到,获得积分10
24秒前
24秒前
嘻嘻完成签到,获得积分10
25秒前
今天不想学习完成签到,获得积分10
25秒前
领导范儿应助动听的蛟凤采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228361
求助须知:如何正确求助?哪些是违规求助? 2876143
关于积分的说明 8193999
捐赠科研通 2543262
什么是DOI,文献DOI怎么找? 1373624
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621343