亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iowa Brain-Behavior Modeling Toolkit: An Open-Source MATLAB Tool for Inferential and Predictive Modeling of Imaging-Behavior and Lesion-Deficit Relationships

计算机科学 机器学习 人工智能 背景(考古学) 范畴变量 单变量 神经影像学 数据挖掘 预测能力 软件 预测建模 接口(物质) 多元统计 心理学 程序设计语言 精神科 古生物学 哲学 认识论 气泡 最大气泡压力法 并行计算 生物
作者
Joseph C. Griffis,Joel Bruss,Stein F Acker,Carrie Shea,Daniel Tranel,Aaron D. Boes
标识
DOI:10.1101/2024.07.31.606046
摘要

The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior studies in particular, has been inferential in nature and has focused on identifying and interpreting statistically significant effects within the sample under study. While this framework is well-suited for hypothesis testing approaches, achieving the modern goal of precision medicine requires a different framework that is predictive in nature and that focuses on maximizing the predictive power of models and evaluating their ability to generalize beyond the data that were used to train them. However, few tools exist to support the development and evaluation of predictive models in the context of neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive modeling approaches in the field. Further, existing tools for lesion-behavior analysis are often unable to accommodate categorical outcome variables and often impose restrictions on the predictor data. Researchers therefore often must use different software packages and analytical approaches depending on whether they are addressing a classification vs. regression problem and on whether their predictor data correspond to binary lesion images, continuous lesion-network images, connectivity matrices, or other data modalities. To address these limitations, we have developed a MATLAB software toolkit that supports both inferential and predictive modeling frameworks, accommodates both classification and regression problems, and does not impose restrictions on the modality of the predictor data. The toolkit features both a graphical user interface and scripting interface, includes implementations of multiple mass-univariate, multivariate, and machine learning models, features built-in and customizable routines for hyper-parameter optimization, cross-validation, model stacking, and significance testing, and automatically generates text-based descriptions of key methodological details and modeling results to improve reproducibility and minimize errors in the reporting of methods and results. Here, we provide an overview and discussion of the toolkit features and demonstrate its functionality by applying it to the question of how expressive and receptive language impairments relate to lesion location, structural disconnection, and functional network disruption in a large sample of patients with left hemispheric brain lesions. We find that impairments in expressive vs. receptive language are most strongly associated with left lateral prefrontal and left posterior temporal/parietal damage, respectively. We also find that impairments in expressive vs. receptive language are associated with partially overlapping patterns of fronto-temporal structural disconnection, and that the associated functional networks are also similar. Importantly, we find that lesion location and lesion-derived network measures are highly predictive of both types of impairment, with predictions from models trained on these measures explaining ~30-40% of the variance on average when applied to data from patients not used to train the models. We have made the toolkit publicly available, and we have included a comprehensive set of tutorial notebooks to support new users in applying the toolkit in their studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助tangyuan采纳,获得10
37秒前
37秒前
47秒前
tangyuan发布了新的文献求助10
51秒前
kokocrl完成签到,获得积分10
1分钟前
棉花糖猫弦完成签到 ,获得积分0
1分钟前
科研通AI2S应助tangyuan采纳,获得30
1分钟前
2分钟前
2分钟前
大个应助十三采纳,获得10
2分钟前
2分钟前
nevillmissy完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
十三发布了新的文献求助10
4分钟前
4分钟前
十三完成签到,获得积分10
4分钟前
微笑的傲易完成签到,获得积分10
4分钟前
爱静静完成签到,获得积分0
4分钟前
lqmentu完成签到,获得积分10
4分钟前
英姑应助JUST采纳,获得10
5分钟前
5分钟前
JUST发布了新的文献求助10
5分钟前
NexusExplorer应助Joker采纳,获得10
6分钟前
CodeCraft应助陈媛采纳,获得10
6分钟前
7分钟前
Joker发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
LouieHuang发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
LouieHuang发布了新的文献求助10
7分钟前
LouieHuang发布了新的文献求助10
7分钟前
LouieHuang发布了新的文献求助10
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846029
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757