Machine learning-driven diagnosis of multiple sclerosis from whole blood transcriptomics

多发性硬化 转录组 临床孤立综合征 管道(软件) 人工智能 计算生物学 医学 计算机科学 生物 免疫学 基因 基因表达 生物化学 程序设计语言
作者
Maryam Omrani,Rosaria Rita Chiarelli,Massimo Acquaviva,Claudia Bassani,Gloria Dalla Costa,Federico Montini,Paolo Preziosa,Lucia Pagani,Francesca Grassivaro,Simone Guerrieri,Marzia Romeo,Francesca Sangalli,B Colombo,Lucia Moiola,Mauro Zaffaroni,Anna M. Pietroboni,Alessandra Protti,Marco Puthenparampil,Roberto Bergamaschi,Gıancarlo Comı,Maria A. Rocca,Vittorio Martinelli,Massimo Filippi,Cinthia Farina
出处
期刊:Brain Behavior and Immunity [Elsevier]
卷期号:121: 269-277
标识
DOI:10.1016/j.bbi.2024.07.039
摘要

Multiple sclerosis (MS) is a neurological disorder characterized by immune dysregulation. It begins with a first clinical manifestation, a clinically isolated syndrome (CIS), which evolves to definite MS in case of further clinical and/or neuroradiological episodes. Here we evaluated the diagnostic value of transcriptional alterations in MS and CIS blood by machine learning (ML). Deep sequencing of more than 200 blood RNA samples comprising CIS, MS and healthy subjects, generated transcriptomes that were analyzed by the binary classification workflow to distinguish MS from healthy subjects and the Time-To-Event pipeline to predict CIS conversion to MS along time. To identify optimal classifiers, we performed algorithm benchmarking by nested cross-validation with the train set in both pipelines and then tested models generated with the train set on an independent dataset for final validation. The binary classification model identified a blood transcriptional signature classifying definite MS from healthy subjects with 97% accuracy, indicating that MS is associated with a clear predictive transcriptional signature in blood cells. When analyzing CIS data with ML survival models, prediction power of CIS conversion to MS was about 72% when using paraclinical data and 74.3% when using blood transcriptomes, indicating that blood-based classifiers obtained at the first clinical event can efficiently predict risk of developing MS. Coupling blood transcriptomics with ML approaches enables retrieval of predictive signatures of CIS conversion and MS state, thus introducing early non-invasive approaches to MS diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
背后思卉应助强壮的米饭采纳,获得10
刚刚
2秒前
2秒前
坦率问枫完成签到,获得积分10
3秒前
3秒前
3秒前
Linxiu完成签到,获得积分10
3秒前
loong完成签到,获得积分20
5秒前
渝安发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
桐桐应助zhang采纳,获得10
6秒前
南宫清涟应助李正安采纳,获得20
7秒前
7秒前
7秒前
8秒前
8秒前
皮托发布了新的文献求助10
8秒前
9秒前
张巨锋完成签到,获得积分10
10秒前
斯南完成签到,获得积分10
10秒前
ttt发布了新的文献求助10
10秒前
啊七完成签到,获得积分10
10秒前
11秒前
渝安完成签到,获得积分10
11秒前
传奇3应助不吃晚饭采纳,获得10
11秒前
12秒前
甜美镜子发布了新的文献求助10
13秒前
13秒前
Pudding完成签到,获得积分10
13秒前
loong发布了新的文献求助10
13秒前
汐颜紫雨发布了新的文献求助10
14秒前
14秒前
yy发布了新的文献求助10
15秒前
王羿发布了新的文献求助10
15秒前
everglow完成签到,获得积分10
15秒前
cjj发布了新的文献求助10
15秒前
1111完成签到,获得积分20
18秒前
窦房结4期完成签到,获得积分10
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583159
求助须知:如何正确求助?哪些是违规求助? 4667130
关于积分的说明 14765305
捐赠科研通 4609254
什么是DOI,文献DOI怎么找? 2529077
邀请新用户注册赠送积分活动 1498340
关于科研通互助平台的介绍 1466992