碳化
阳极
锂(药物)
材料科学
多孔性
碳纤维
化学工程
复合材料
化学
电极
扫描电子显微镜
医学
物理化学
复合数
工程类
内分泌学
作者
Baolin Xing,Feng Shi,Zhanzhan Jin,Huihui Zeng,Xiaoxiao Qu,G.S. Huang,Chuanxiang Zhang,Yunkai Xu,Zhengfei Chen,Jun Lü
摘要
Abstract Two‐dimensional porous carbon nanosheets (PCNSs) are considered promising anodes for lithium‐ion batteries due to their synergetic features arising from both graphene and porous structures. Herein, using naturally abundant and biocompatible sodium humate (SH) as the precursor, PCNSs are prepared from the laboratory scale up to the kilogram scale by a method of a facile ice‐templating‐induced puzzle coupled with a carbonization strategy. Such obtained SH‐derived PCNSs (SH‐PCNSs) possess a hierarchical porous structure dominated by mesopores having a specific surface area (~127.19 2 g −1 ), pore volume (~0.134 cm 3 g −1 ), sheet‐like morphology (~2.18 nm in thickness), and nitrogen/oxygen‐containing functional groups. Owing to these merits, the SH‐PCNSs present impressive Li‐ion storage characteristics, including high reversible capacity (1011 mAh g −1 at 0.1 A g −1 ), excellent rate capability (465 mAh g −1 at 5 A g −1 ), and superior cycle stability (76.8% capacitance retention after 1000 cycles at 5 A g −1 ). It is noted that the SH‐PCNSs prepared from the kilogram‐scale production procedure possess comparable electrochemical properties. Furthermore, coupling with a LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode, the full cells deliver a high capacity of 167 mAh g −1 at 0.2 A g −1 and exhibit an outstanding energy density of 128.8 Wh kg −1 , highlighting the practicability of this porous carbon nanosheets and the potential commercial opportunity of the scalable processing approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI