Non-contrast CT radiomics-clinical machine learning model for futile recanalization after endovascular treatment in anterior circulation acute ischemic stroke

医学 列线图 逻辑回归 无线电技术 冲程(发动机) 改良兰金量表 放射科 对比度(视觉) 曲线下面积 缺血性中风 内科学 人工智能 缺血 机械工程 计算机科学 工程类
作者
Tao Sun,Hai-yun Yu,Chun-Hua Zhan,Han-long Guo,Muyun Luo
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12880-024-01365-7
摘要

Abstract Objective To establish a machine learning model based on radiomics and clinical features derived from non-contrast CT to predict futile recanalization (FR) in patients with anterior circulation acute ischemic stroke (AIS) undergoing endovascular treatment. Methods A retrospective analysis was conducted on 174 patients who underwent endovascular treatment for acute anterior circulation ischemic stroke between January 2020 and December 2023. FR was defined as successful recanalization but poor prognosis at 90 days (modified Rankin Scale, mRS 4–6). Radiomic features were extracted from non-contrast CT and selected using the least absolute shrinkage and selection operator (LASSO) regression method. Logistic regression (LR) model was used to build models based on radiomic and clinical features. A radiomics-clinical nomogram model was developed, and the predictive performance of the models was evaluated using area under the curve (AUC), accuracy, sensitivity, and specificity. Results A total of 174 patients were included. 2016 radiomic features were extracted from non-contrast CT, and 9 features were selected to build the radiomics model. Univariate and stepwise multivariate analyses identified admission NIHSS score, hemorrhagic transformation, NLR, and admission blood glucose as independent factors for building the clinical model. The AUC of the radiomics-clinical nomogram model in the training and testing cohorts were 0.860 (95%CI 0.801–0.919) and 0.775 (95%CI 0.605–0.945), respectively. Conclusion The radiomics-clinical nomogram model based on non-contrast CT demonstrated satisfactory performance in predicting futile recanalization in patients with anterior circulation acute ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌完成签到,获得积分10
刚刚
刚刚
开心的梦桃完成签到,获得积分10
刚刚
1秒前
派大星完成签到,获得积分10
1秒前
cong1216发布了新的文献求助20
1秒前
Nansen完成签到,获得积分10
1秒前
环秋完成签到,获得积分0
2秒前
居居子完成签到,获得积分10
2秒前
xie老板完成签到,获得积分10
2秒前
VVhahaha完成签到,获得积分10
2秒前
一只眠羊完成签到,获得积分10
2秒前
MaSaR发布了新的文献求助20
2秒前
3秒前
ouLniM发布了新的文献求助10
3秒前
追马完成签到,获得积分10
3秒前
4秒前
zhalc完成签到,获得积分20
4秒前
AWGTT完成签到 ,获得积分10
5秒前
5秒前
orixero应助科研啊科研采纳,获得10
5秒前
脑洞疼应助乐观无心采纳,获得10
6秒前
张努力发布了新的文献求助10
7秒前
damie完成签到 ,获得积分10
7秒前
背后雨安完成签到,获得积分10
8秒前
妙aaa完成签到,获得积分10
8秒前
8秒前
酷酷的雪碧完成签到,获得积分10
8秒前
lilac应助qyhyhn采纳,获得10
8秒前
JPH1990完成签到,获得积分10
9秒前
不安一鸣完成签到,获得积分10
9秒前
9秒前
FBI911应助假装超人会飞采纳,获得10
9秒前
科研通AI5应助伶俐的不尤采纳,获得30
9秒前
9秒前
风华完成签到,获得积分10
9秒前
乐正夜白发布了新的文献求助10
10秒前
兔斯基发布了新的文献求助10
10秒前
vict完成签到,获得积分10
10秒前
诗酒发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006