材料科学
锂(药物)
离子
金属锂
固态
聚合物
金属
偶极子
化学物理
基质(化学分析)
纳米技术
工程物理
物理化学
阳极
电极
有机化学
复合材料
物理
化学
医学
冶金
内分泌学
作者
Dashan Zhang,Zicheng Luo,Hongfei Xu,Yu Guo,Hao Chen,Yuxuan Ye,Junwei An,Hui Jia,Yongzheng Shi,Shubin Yang,Bin Li
标识
DOI:10.1002/adfm.202409134
摘要
Abstract Although polymer electrolytes have shown great potential in solid‐state lithium metal batteries (LMBs), the polymer chain segments anchor the movement of lithium ions (Li + ), which induces the low ionic conductivity of the electrolytes and limits their application. Herein, a strategy of harnessing ion‐dipole interactions is proposed to liberate lithium ions from polymer chains. The adiponitrile (ADN) molecular dipole with strong bond dipole moment (C≡N, 11.8 × 10 −30 C m) is introduced into the polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐HFP) polymer matrix, achieving an electrolyte with high ionic conductivity of 5.1 × 10 −4 S cm −1 at 30 °C. It is demonstrated that the strong ion‐dipole interaction between C≡N and Li + weakens the ion‐dipole interaction of F···…Li + , facilitating Li + dissociation and liberating Li + from polymer chains. Moreover, a hybrid and unsaturated solvation structure is formed with the ADN molecular dipole, PVDF‐HFP polymer chain, and TFSI − anion, corresponding to the solvent‐separated ion pair (SSIP) solvation structure. Thus, the obtained electrolyte realizes high ionic conductivity and lithium‐ion transference number (0.74). Consequently, the assembled lithium symmetric cell delivers stable Li stripping/plating reversibility over 900 h. Additionally, the Li|LiFePO 4 full cells exhibit long‐term cycling stability at 0.5 C over 300 cycles with a capacity retention of 96.4% and ultralong cycling of 1000 cycles at a high rate (5 C).
科研通智能强力驱动
Strongly Powered by AbleSci AI