Development and validation of a prediction model using sella magnetic resonance imaging-based radiomics and clinical parameters for diagnosis of growth hormone deficiency and idiopathic short stature: A cross-sectional, multicenter study (Preprint)

磁共振成像 横断面研究 特发性矮身高 无线电技术 医学 多中心研究 身材矮小 交叉验证 儿科 内科学 放射科 生长激素 人工智能 计算机科学 病理 激素 随机对照试验
作者
Kyungchul Song,Taehoon Ko,Hyun Wook Chae,Jun Suk Oh,Ho-Seong Kim,Hyun Joo Shin,Jeong‐Ho Kim,Jihoon Na,Chae Jung Park,Beomseok Sohn
出处
期刊:Journal of Medical Internet Research 卷期号:26: e54641-e54641
标识
DOI:10.2196/54641
摘要

Background Growth hormone deficiency (GHD) and idiopathic short stature (ISS) are the major etiologies of short stature in children. For the diagnosis of GHD and ISS, meticulous evaluations are required, including growth hormone provocation tests, which are invasive and burdensome for children. Additionally, sella magnetic resonance imaging (MRI) is necessary for assessing etiologies of GHD, which cannot evaluate hormonal secretion. Recently, radiomics has emerged as a revolutionary technique that uses mathematical algorithms to extract various features for the quantitative analysis of medical images. Objective This study aimed to develop a machine learning–based model using sella MRI–based radiomics and clinical parameters to diagnose GHD and ISS. Methods A total of 293 children with short stature who underwent sella MRI and growth hormone provocation tests were included in the training set, and 47 children who met the same inclusion criteria were enrolled in the test set from different hospitals for this study. A total of 186 radiomic features were extracted from the pituitary glands using a semiautomatic segmentation process for both the T2-weighted and contrast-enhanced T1-weighted image. The clinical parameters included auxological data, insulin-like growth factor-I, and bone age. The extreme gradient boosting algorithm was used to train the prediction models. Internal validation was conducted using 5-fold cross-validation on the training set, and external validation was conducted on the test set. Model performance was assessed by plotting the area under the receiver operating characteristic curve. The mean absolute Shapley values were computed to quantify the impact of each parameter. Results The area under the receiver operating characteristic curves (95% CIs) of the clinical, radiomics, and combined models were 0.684 (0.590-0.778), 0.691 (0.620-0.762), and 0.830 (0.741-0.919), respectively, in the external validation. Among the clinical parameters, the major contributing factors to prediction were BMI SD score (SDS), chronological age–bone age, weight SDS, growth velocity, and insulin-like growth factor-I SDS in the clinical model. In the combined model, radiomic features including maximum probability from a T2-weighted image and run length nonuniformity normalized from a T2-weighted image added incremental value to the prediction (combined model vs clinical model, P=.03; combined model vs radiomics model, P=.02). The code for our model is available in a public repository on GitHub. Conclusions Our model combining both radiomics and clinical parameters can accurately predict GHD from ISS, which was also proven in the external validation. These findings highlight the potential of machine learning–based models using radiomics and clinical parameters for diagnosing GHD and ISS.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助荔枝榨汁儿采纳,获得10
4秒前
研量完成签到 ,获得积分10
4秒前
汕头凯奇完成签到,获得积分10
5秒前
vsvsgo完成签到,获得积分10
5秒前
6秒前
SciGPT应助Fine采纳,获得10
6秒前
ri_290发布了新的文献求助10
7秒前
共享精神应助六水居士采纳,获得10
8秒前
starry发布了新的文献求助10
8秒前
XIE完成签到,获得积分10
9秒前
南关三完成签到,获得积分10
9秒前
10秒前
ZeroL完成签到 ,获得积分10
10秒前
FCH2023完成签到,获得积分10
11秒前
13秒前
abc完成签到 ,获得积分10
14秒前
shfgref完成签到,获得积分10
14秒前
15秒前
iNk应助mpshupi采纳,获得10
15秒前
Fine发布了新的文献求助10
17秒前
青铜伤疤完成签到,获得积分10
17秒前
华仔应助苏木采纳,获得10
18秒前
gugugaga发布了新的文献求助20
18秒前
聪慧语山完成签到 ,获得积分10
18秒前
跨材料完成签到,获得积分10
18秒前
风花雪月完成签到,获得积分10
19秒前
IvanLIu完成签到 ,获得积分10
19秒前
zhuhan发布了新的文献求助10
19秒前
LIJIngcan发布了新的文献求助10
20秒前
20秒前
20秒前
JamesPei应助流年采纳,获得10
20秒前
失眠的万言完成签到,获得积分10
20秒前
aki空中飞跃完成签到,获得积分10
21秒前
kenny完成签到,获得积分10
21秒前
虚幻谷秋完成签到,获得积分10
24秒前
貔貅发布了新的文献求助10
24秒前
yzy-gc完成签到,获得积分10
24秒前
26秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408265
求助须知:如何正确求助?哪些是违规求助? 3012437
关于积分的说明 8854194
捐赠科研通 2699552
什么是DOI,文献DOI怎么找? 1480086
科研通“疑难数据库(出版商)”最低求助积分说明 684157
邀请新用户注册赠送积分活动 678462