Model‐based frequency‐and‐phase correction of 1H MRS data with 2D linear‐combination modeling

振幅 相(物质) 算法 基本事实 计算机科学 噪音(视频) 残余物 航程(航空) 数学 人工智能 物理 光学 量子力学 材料科学 复合材料 图像(数学)
作者
Dunja Simičić,Helge J. Zöllner,Christopher W. Davies‐Jenkins,Kathleen E. Hupfeld,Richard A.E. Edden,Georg Oeltzschner
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30209
摘要

Abstract Purpose Retrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear‐combination model (2D‐LCM) of individual transients (“model‐based FPC”). We investigated how model‐based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D‐LCM in estimating frequency‐and‐phase drifts and, consequentially, metabolite level estimates. Methods We created synthetic in‐vivo‐like 64‐transient short‐TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D‐LCM with the traditional approach (spectral registration, averaging, then 1D‐LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground‐truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in‐vivo short‐TE PRESS data. Results 2D‐LCM estimates (and accounts for) frequency‐and‐phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D‐LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D‐LCM estimation of FPC and amplitudes performed substantially better at low‐to‐very‐low SNR. Conclusion Model‐based FPC with 2D linear‐combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low‐SNR conditions, for example, long TEs or strong diffusion weighting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
wsy完成签到,获得积分20
2秒前
何pengda完成签到,获得积分10
4秒前
函王完成签到,获得积分10
4秒前
卡卡西应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
ED应助科研通管家采纳,获得10
4秒前
卡卡西应助科研通管家采纳,获得10
4秒前
wangling2333应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
卡卡西应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
卡卡西应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得30
5秒前
mostspecial应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
卡卡西应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
好好看文献完成签到,获得积分10
6秒前
酷波er应助微笑的寒梦采纳,获得10
6秒前
鬼笔环肽发布了新的文献求助10
7秒前
7秒前
大脚仙完成签到,获得积分10
7秒前
Landau完成签到,获得积分20
8秒前
learner1994发布了新的文献求助10
8秒前
无限海白完成签到,获得积分10
8秒前
赫尔发布了新的文献求助10
8秒前
dingdingding完成签到,获得积分10
9秒前
安七完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
古月完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582