Model‐based frequency‐and‐phase correction of 1H MRS data with 2D linear‐combination modeling

振幅 相(物质) 算法 基本事实 计算机科学 噪音(视频) 残余物 航程(航空) 数学 人工智能 物理 光学 量子力学 材料科学 复合材料 图像(数学)
作者
Dunja Simičić,Helge J. Zöllner,Christopher W. Davies‐Jenkins,Kathleen E. Hupfeld,Richard A.E. Edden,Georg Oeltzschner
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30209
摘要

Abstract Purpose Retrospective frequency‐and‐phase correction (FPC) methods attempt to remove frequency‐and‐phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear‐combination model (2D‐LCM) of individual transients (“model‐based FPC”). We investigated how model‐based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D‐LCM in estimating frequency‐and‐phase drifts and, consequentially, metabolite level estimates. Methods We created synthetic in‐vivo‐like 64‐transient short‐TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D‐LCM with the traditional approach (spectral registration, averaging, then 1D‐LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground‐truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in‐vivo short‐TE PRESS data. Results 2D‐LCM estimates (and accounts for) frequency‐and‐phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D‐LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D‐LCM estimation of FPC and amplitudes performed substantially better at low‐to‐very‐low SNR. Conclusion Model‐based FPC with 2D linear‐combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low‐SNR conditions, for example, long TEs or strong diffusion weighting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叫什么好呢完成签到,获得积分20
1秒前
11发布了新的文献求助10
3秒前
4秒前
科研鸟发布了新的文献求助10
4秒前
4秒前
沸腾鱼健康完成签到,获得积分10
4秒前
4秒前
脑洞疼应助lhs采纳,获得10
5秒前
何1完成签到,获得积分20
6秒前
何1发布了新的文献求助10
9秒前
13秒前
yu完成签到 ,获得积分10
13秒前
14秒前
科研鸟完成签到,获得积分10
14秒前
zouzhao发布了新的文献求助10
18秒前
19秒前
123发布了新的文献求助10
20秒前
木子李33完成签到,获得积分20
21秒前
22秒前
22秒前
23秒前
27秒前
27秒前
27秒前
Owen应助yfw采纳,获得10
28秒前
李大姐发布了新的文献求助10
28秒前
Besty完成签到,获得积分10
28秒前
orixero应助Zxc采纳,获得10
28秒前
笑点低映冬完成签到,获得积分10
29秒前
123完成签到,获得积分20
30秒前
yehaidadao发布了新的文献求助10
30秒前
qqesk发布了新的文献求助10
31秒前
阿治完成签到 ,获得积分10
32秒前
33秒前
田様应助qqesk采纳,获得10
34秒前
安古妮稀发布了新的文献求助10
38秒前
饼大王完成签到,获得积分10
38秒前
忘的澜完成签到,获得积分10
39秒前
40秒前
42秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043