Thermodynamically spontaneously intercalated H3O+ enables LiMn2O4 with enhanced proton tolerance in aqueous batteries

水溶液 质子 化学 材料科学 物理 物理化学 量子力学
作者
Jing‐Fang Huang,Liang Xue,Yin Huang,Yanchen Jiang,Ping Wu,Xiulin Fan,Junwu Zhu
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41467-024-51060-y
摘要

LiMn2O4 (LMO) is an attractive positive electrode material for aqueous lithium-ion batteries (ALIBs), but its inferior cycle performance limits the practical application. The degradation mechanism of LMO in ALIBs is still unclear, resulting in inability to predictably improve its structural stability. The electrode/electrolyte interface is believed to play an important role in electrode degradation. However, the interactions of the water-containing electrode/electrolyte interface of LMO are underexplored. In this work, we demonstrate the insertion of H3O+ into LMO during cycling in aqueous electrolyte and elucidate the paradoxical effects of H3O+. The crystal H3O+ enhances the structural stability of LMO by forming a gradient Mn4+-rich protective shell, but an excess amount of crystal H3O+ leads to poor Li+ conductivity, resulting in rapid capacity fading. Combining electrochemical analyses, structural characterizations, and first-principles calculations, we reveal the intercalation of H3O+ into LMO and its associated mechanism on the structural evolution of LMO. Furthermore, we regulate the crystal H3O+ content in LMO by modifying the hydrogen bond networks of aqueous electrolyte to restrict H2O molecule activity. This approach utilizes an appropriate amount of crystal H3O+ to enhance the structural stability of LMO while maintaining sufficient Li+ diffusion. The interfacial reactions of the battery material LiMn2O4 in aqueous electrolytes are intricate and underexplored. Here, authors demonstrate H3O+ insertion into LiMn2O4 and elucidate the paradoxical effects of lattice H3O+, which enhances proton tolerance but impedes Li+ diffusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乒哩乓拉完成签到,获得积分10
刚刚
柑橘乌云完成签到,获得积分10
刚刚
刚刚
刚刚
雷小牛发布了新的文献求助10
1秒前
1秒前
1秒前
落后的小伙完成签到,获得积分10
1秒前
佐伊发布了新的文献求助50
1秒前
FashionBoy应助DamonChen采纳,获得10
1秒前
小任发布了新的文献求助10
2秒前
liang发布了新的文献求助10
2秒前
LELE完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI2S应助叮当喵采纳,获得10
2秒前
清秀寄风完成签到,获得积分10
2秒前
3秒前
3秒前
zyq发布了新的文献求助10
3秒前
4秒前
ccm应助zpp采纳,获得10
4秒前
楊書銘完成签到,获得积分10
4秒前
4秒前
蒋若风发布了新的文献求助10
4秒前
叶液发布了新的文献求助10
4秒前
复杂易巧发布了新的文献求助10
5秒前
5秒前
LELE发布了新的文献求助10
5秒前
szc发布了新的文献求助10
5秒前
斯文败类应助叶子采纳,获得10
5秒前
思源应助雨雨雨采纳,获得10
6秒前
6秒前
大胆白凝完成签到,获得积分10
6秒前
6秒前
芸沐完成签到,获得积分10
6秒前
自由的筝完成签到,获得积分20
6秒前
nisha完成签到,获得积分10
6秒前
武坤完成签到,获得积分20
6秒前
7秒前
xx_2000完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836