Thermodynamically spontaneously intercalated H3O+ enables LiMn2O4 with enhanced proton tolerance in aqueous batteries

水溶液 质子 化学 材料科学 物理 物理化学 量子力学
作者
Jing‐Fang Huang,Liang Xue,Yin Huang,Yanchen Jiang,Ping Wu,Xiulin Fan,Junwu Zhu
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41467-024-51060-y
摘要

LiMn2O4 (LMO) is an attractive positive electrode material for aqueous lithium-ion batteries (ALIBs), but its inferior cycle performance limits the practical application. The degradation mechanism of LMO in ALIBs is still unclear, resulting in inability to predictably improve its structural stability. The electrode/electrolyte interface is believed to play an important role in electrode degradation. However, the interactions of the water-containing electrode/electrolyte interface of LMO are underexplored. In this work, we demonstrate the insertion of H3O+ into LMO during cycling in aqueous electrolyte and elucidate the paradoxical effects of H3O+. The crystal H3O+ enhances the structural stability of LMO by forming a gradient Mn4+-rich protective shell, but an excess amount of crystal H3O+ leads to poor Li+ conductivity, resulting in rapid capacity fading. Combining electrochemical analyses, structural characterizations, and first-principles calculations, we reveal the intercalation of H3O+ into LMO and its associated mechanism on the structural evolution of LMO. Furthermore, we regulate the crystal H3O+ content in LMO by modifying the hydrogen bond networks of aqueous electrolyte to restrict H2O molecule activity. This approach utilizes an appropriate amount of crystal H3O+ to enhance the structural stability of LMO while maintaining sufficient Li+ diffusion. The interfacial reactions of the battery material LiMn2O4 in aqueous electrolytes are intricate and underexplored. Here, authors demonstrate H3O+ insertion into LiMn2O4 and elucidate the paradoxical effects of lattice H3O+, which enhances proton tolerance but impedes Li+ diffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Rainielove0215完成签到,获得积分0
1秒前
zz完成签到,获得积分10
2秒前
2秒前
kyle完成签到,获得积分10
4秒前
感性的凉面完成签到,获得积分20
4秒前
4秒前
请叫我风吹麦浪应助末岛采纳,获得10
5秒前
Aprial发布了新的文献求助30
5秒前
dd发布了新的文献求助10
5秒前
传奇3应助科研小菜鸟采纳,获得10
5秒前
在水一方应助惠惠采纳,获得10
6秒前
7秒前
冷艳贵公子王少完成签到 ,获得积分10
7秒前
KatzeBaliey完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
zz发布了新的文献求助10
8秒前
8秒前
Twikky发布了新的文献求助10
9秒前
9秒前
小马甲应助芒果采纳,获得10
10秒前
10秒前
心想事成完成签到,获得积分10
12秒前
隐形曼青应助噔噔噔噔采纳,获得10
12秒前
wei发布了新的文献求助10
12秒前
Nature完成签到,获得积分10
12秒前
樱桃苏打水完成签到,获得积分10
13秒前
zhui发布了新的文献求助10
13秒前
金色热浪发布了新的文献求助10
13秒前
pinging应助讲你ing采纳,获得10
15秒前
小九完成签到 ,获得积分10
16秒前
华仔应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
ivy应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
喵酱完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794