A Genomics-Driven Artificial Intelligence-Based Model Classifies Breast Invasive Lobular Carcinoma and Discovers CDH1 Inactivating Mechanisms

CDH1 浸润性小叶癌 基因组学 小叶癌 乳腺癌 计算生物学 计算机科学 人工智能 生物 癌症 医学 内科学 浸润性导管癌 遗传学 基因 钙粘蛋白 基因组 细胞 导管癌
作者
Fresia Pareja,Higinio Dopeso,Yi Kan Wang,Andrea Gazzo,David Brown,Monami Banerjee,Pier Selenica,Jan H. Bernhard,Fatemeh Derakhshan,Edaise M. da Silva,Lorraine Colon-Cartagena,Thais Basili,Antonio Marra,Jillian Sue,Qiqi Ye,Arnaud Da Cruz Paula,Selma Yeni Yildirim,Xin Pei,Anton Safonov,Hunter Green,Kaitlyn Gill,Yingjie Zhu,Matthew Chung Hai Lee,Ran Godrich,Adam Casson,Britta Weigelt,Nadeem Riaz,Hannah Y. Wen,Edi Brogi,Diana Mandelker,Matthew G. Hanna,Jeremy D. Kunz,Brandon Rothrock,Sarat Chandarlapaty,Christopher Kanan,Joe Oakley,David S. Klimstra,Thomas J. Fuchs,Jorge S. Reis‐Filho
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (20): 3478-3489 被引量:1
标识
DOI:10.1158/0008-5472.can-24-1322
摘要

Artificial intelligence (AI) systems can improve cancer diagnosis, yet their development often relies on subjective histologic features as ground truth for training. Herein, we developed an AI model applied to histologic whole-slide images using CDH1 biallelic mutations, pathognomonic for invasive lobular carcinoma (ILC) in breast neoplasms, as ground truth. The model accurately predicted CDH1 biallelic mutations (accuracy = 0.95) and diagnosed ILC (accuracy = 0.96). A total of 74% of samples classified by the AI model as having CDH1 biallelic mutations but lacking these alterations displayed alternative CDH1 inactivating mechanisms, including a deleterious CDH1 fusion gene and noncoding CDH1 genetic alterations. Analysis of internal and external validation cohorts demonstrated 0.95 and 0.89 accuracy for ILC diagnosis, respectively. The latent features of the AI model correlated with human-explainable histopathologic features. Taken together, this study reports the construction of an AI algorithm trained using a genetic rather than histologic ground truth that can robustly classify ILCs and uncover CDH1 inactivating mechanisms, providing the basis for orthogonal ground truth utilization for development of diagnostic AI models applied to whole-slide image. Significance: Genetic alterations linked to strong genotypic-phenotypic correlations can be utilized to develop AI systems applied to pathology that facilitate cancer diagnosis and biologic discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
liujingyi发布了新的文献求助10
2秒前
欣欣子完成签到 ,获得积分10
3秒前
Ava应助欣喜雪晴采纳,获得10
3秒前
南风吹梦完成签到,获得积分10
3秒前
wzx完成签到,获得积分10
3秒前
1997SD完成签到,获得积分10
4秒前
4秒前
劲秉应助拥有八根情丝采纳,获得30
5秒前
小船发布了新的文献求助10
7秒前
斯皮克完成签到,获得积分10
8秒前
9秒前
leezcc完成签到,获得积分0
12秒前
李健应助yy采纳,获得10
13秒前
14秒前
Isaac完成签到,获得积分10
19秒前
21秒前
科研通AI2S应助liujingyi采纳,获得10
21秒前
21秒前
Bellis完成签到 ,获得积分10
21秒前
小船完成签到,获得积分10
23秒前
wyd完成签到,获得积分10
24秒前
羡羡呀完成签到 ,获得积分10
24秒前
喆喆发布了新的文献求助10
27秒前
小林不熬夜完成签到 ,获得积分10
27秒前
28秒前
英俊的铭应助lijieyuan采纳,获得10
29秒前
30秒前
bkagyin应助科研通管家采纳,获得10
35秒前
杳鸢应助科研通管家采纳,获得10
35秒前
jevon应助科研通管家采纳,获得10
35秒前
ZHU应助科研通管家采纳,获得10
35秒前
Jasper应助科研通管家采纳,获得10
35秒前
jevon应助科研通管家采纳,获得10
35秒前
打打应助科研通管家采纳,获得10
35秒前
iNk应助科研通管家采纳,获得20
35秒前
jevon应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
李健应助科研通管家采纳,获得10
36秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212348
求助须知:如何正确求助?哪些是违规求助? 2861200
关于积分的说明 8127627
捐赠科研通 2527168
什么是DOI,文献DOI怎么找? 1360782
科研通“疑难数据库(出版商)”最低求助积分说明 643322
邀请新用户注册赠送积分活动 615664