A Genomics-Driven Artificial Intelligence-Based Model Classifies Breast Invasive Lobular Carcinoma and Discovers CDH1 Inactivating Mechanisms

CDH1 浸润性小叶癌 基因组学 小叶癌 乳腺癌 计算生物学 计算机科学 人工智能 生物 癌症 医学 内科学 浸润性导管癌 遗传学 基因 钙粘蛋白 基因组 细胞 导管癌
作者
Fresia Pareja,Higinio Dopeso,Yi Kan Wang,Andrea Gazzo,David Brown,Monami Banerjee,Pier Selenica,Jan H. Bernhard,Fatemeh Derakhshan,Edaise M. da Silva,Lorraine Colon-Cartagena,Thais Basili,Antonio Marra,Jillian Sue,Qiqi Ye,Arnaud Da Cruz Paula,Selma Yeni Yildirim,Xin Pei,Anton Safonov,Hunter Green,Kaitlyn Gill,Yingjie Zhu,Matthew Chung Hai Lee,Ran Godrich,Adam Casson,Britta Weigelt,Nadeem Riaz,Hannah Y. Wen,Edi Brogi,Diana Mandelker,Matthew G. Hanna,Jeremy D. Kunz,Brandon Rothrock,Sarat Chandarlapaty,Christopher Kanan,Joe Oakley,David S. Klimstra,Thomas J. Fuchs,Jorge S. Reis‐Filho
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (20): 3478-3489 被引量:1
标识
DOI:10.1158/0008-5472.can-24-1322
摘要

Artificial intelligence (AI) systems can improve cancer diagnosis, yet their development often relies on subjective histologic features as ground truth for training. Herein, we developed an AI model applied to histologic whole-slide images using CDH1 biallelic mutations, pathognomonic for invasive lobular carcinoma (ILC) in breast neoplasms, as ground truth. The model accurately predicted CDH1 biallelic mutations (accuracy = 0.95) and diagnosed ILC (accuracy = 0.96). A total of 74% of samples classified by the AI model as having CDH1 biallelic mutations but lacking these alterations displayed alternative CDH1 inactivating mechanisms, including a deleterious CDH1 fusion gene and noncoding CDH1 genetic alterations. Analysis of internal and external validation cohorts demonstrated 0.95 and 0.89 accuracy for ILC diagnosis, respectively. The latent features of the AI model correlated with human-explainable histopathologic features. Taken together, this study reports the construction of an AI algorithm trained using a genetic rather than histologic ground truth that can robustly classify ILCs and uncover CDH1 inactivating mechanisms, providing the basis for orthogonal ground truth utilization for development of diagnostic AI models applied to whole-slide image. Significance: Genetic alterations linked to strong genotypic-phenotypic correlations can be utilized to develop AI systems applied to pathology that facilitate cancer diagnosis and biologic discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
power完成签到,获得积分10
刚刚
852应助草莓糖葫芦采纳,获得10
1秒前
2秒前
充电宝应助机灵浩天采纳,获得10
2秒前
3秒前
5秒前
渡水寻彼岸完成签到,获得积分20
6秒前
6秒前
英俊的铭应助坚强幼晴采纳,获得10
6秒前
FDSDK发布了新的文献求助10
7秒前
DE2022发布了新的文献求助10
8秒前
8秒前
111完成签到,获得积分20
9秒前
9秒前
蝶衣发布了新的文献求助10
9秒前
9秒前
9秒前
羊羊羊发布了新的文献求助10
9秒前
星辰大海应助杨志坚采纳,获得10
9秒前
9秒前
Owen应助kmo采纳,获得10
11秒前
JAL完成签到,获得积分10
11秒前
进取拼搏发布了新的文献求助10
12秒前
12秒前
111发布了新的文献求助10
13秒前
SciGPT应助杜青采纳,获得10
13秒前
领导范儿应助茅十八采纳,获得10
14秒前
NexusExplorer应助w王采纳,获得10
16秒前
JAL发布了新的文献求助10
16秒前
乃惜发布了新的文献求助10
17秒前
18秒前
llxie完成签到,获得积分10
19秒前
123完成签到,获得积分10
19秒前
Jasper应助111采纳,获得10
20秒前
小二郎应助蔡小娜采纳,获得10
20秒前
情怀应助DDy10001采纳,获得10
21秒前
斯文败类应助明亮的香薇采纳,获得10
21秒前
22秒前
sky998524完成签到,获得积分10
22秒前
wuchang发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143