Efficient online estimation and remaining useful life prediction based on the inverse Gaussian process

估计 逆高斯分布 过程(计算) 高斯过程 计算机科学 反向 人工智能 计量经济学 高斯分布 统计 机器学习 数学 算法 数据挖掘 工程类 物理 数学分析 几何学 系统工程 分布(数学) 量子力学 操作系统
作者
Ancha Xu,Jingyang Wang,Yincai Tang,Piao Chen
出处
期刊:Naval Research Logistics [Wiley]
被引量:3
标识
DOI:10.1002/nav.22226
摘要

Abstract Fast and reliable remaining useful life (RUL) prediction plays a critical role in prognostic and health management of industrial assets. Due to advances in data‐collecting techniques, RUL prediction based on the degradation data has attracted considerable attention during the past decade. In the literature, the majority of studies have focused on RUL prediction using the Wiener process as the underlying degradation model. On the other hand, when the degradation path is monotone, the inverse Gaussian (IG) process has been shown as a popular alternative to the Wiener process. Despite the importance of IG process in degradation modeling, however, there remains a paucity of studies on the RUL prediction based on the IG process. Therefore, the principal objective of this study is to provide a systematic analysis of the RUL prediction based on the IG process. We first propose a series of novel online estimation algorithms so that the model parameters can be efficiently updated whenever a new collection of degradation measurements is available. The distribution of RUL is then derived, which could also be recursively updated. In view of the possible heterogeneities among different systems, we further extend the proposed online algorithms to the IG random‐effect model. Numerical studies and asymptotic analysis show that both the parameters and the RUL can be efficiently and credibly estimated by the proposed algorithms. At last, two real degradation datasets are used for illustration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助科研通管家采纳,获得30
1秒前
laryc完成签到,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得50
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
考拉完成签到 ,获得积分10
1秒前
Alex应助科研通管家采纳,获得20
1秒前
阿尔图完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
ddd应助科研通管家采纳,获得100
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
he完成签到 ,获得积分10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
Jasper应助虚幻小丸子采纳,获得10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
zxy应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
欣慰小丸子应助lhh采纳,获得10
3秒前
HCl完成签到,获得积分10
3秒前
开水发布了新的文献求助30
3秒前
灿烂千阳完成签到,获得积分10
4秒前
有你就足够完成签到,获得积分10
5秒前
啊标完成签到,获得积分10
5秒前
5秒前
暗芒完成签到,获得积分10
5秒前
攸宁完成签到 ,获得积分10
5秒前
6秒前
Wang发布了新的文献求助10
6秒前
siste发布了新的文献求助10
6秒前
听风轻语完成签到,获得积分10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128