Efficient online estimation and remaining useful life prediction based on the inverse Gaussian process

估计 逆高斯分布 过程(计算) 高斯过程 计算机科学 反向 人工智能 计量经济学 高斯分布 统计 机器学习 数学 算法 数据挖掘 工程类 物理 数学分析 几何学 系统工程 分布(数学) 量子力学 操作系统
作者
Ancha Xu,Jingyang Wang,Yincai Tang,Piao Chen
出处
期刊:Naval Research Logistics [Wiley]
被引量:3
标识
DOI:10.1002/nav.22226
摘要

Abstract Fast and reliable remaining useful life (RUL) prediction plays a critical role in prognostic and health management of industrial assets. Due to advances in data‐collecting techniques, RUL prediction based on the degradation data has attracted considerable attention during the past decade. In the literature, the majority of studies have focused on RUL prediction using the Wiener process as the underlying degradation model. On the other hand, when the degradation path is monotone, the inverse Gaussian (IG) process has been shown as a popular alternative to the Wiener process. Despite the importance of IG process in degradation modeling, however, there remains a paucity of studies on the RUL prediction based on the IG process. Therefore, the principal objective of this study is to provide a systematic analysis of the RUL prediction based on the IG process. We first propose a series of novel online estimation algorithms so that the model parameters can be efficiently updated whenever a new collection of degradation measurements is available. The distribution of RUL is then derived, which could also be recursively updated. In view of the possible heterogeneities among different systems, we further extend the proposed online algorithms to the IG random‐effect model. Numerical studies and asymptotic analysis show that both the parameters and the RUL can be efficiently and credibly estimated by the proposed algorithms. At last, two real degradation datasets are used for illustration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助郁离子采纳,获得30
2秒前
雾海上的旅人完成签到,获得积分10
5秒前
Owen应助李嘉图采纳,获得10
6秒前
vanqing完成签到,获得积分10
6秒前
Begonia发布了新的文献求助20
6秒前
Hello应助小李采纳,获得10
8秒前
Orange应助xin采纳,获得10
10秒前
11秒前
田様应助羊大侠采纳,获得10
13秒前
裴元瑾完成签到,获得积分10
14秒前
orixero应助赵梦妍采纳,获得10
14秒前
15秒前
xkyi关注了科研通微信公众号
16秒前
16秒前
HEROTREE发布了新的文献求助10
17秒前
朴实老虎发布了新的文献求助20
17秒前
Orange应助Dissipater采纳,获得20
20秒前
无语的冰淇淋完成签到 ,获得积分10
20秒前
小Q啊啾发布了新的文献求助10
20秒前
22秒前
25秒前
ccc发布了新的文献求助10
26秒前
wcx完成签到,获得积分10
27秒前
深情安青应助狂野书易采纳,获得10
27秒前
了了发布了新的文献求助10
28秒前
Akim应助吉他平方采纳,获得10
28秒前
29秒前
30秒前
欣欣发布了新的文献求助10
30秒前
打打应助小城采纳,获得10
32秒前
小李发布了新的文献求助10
33秒前
贪玩的真发布了新的文献求助10
33秒前
领导范儿应助了了采纳,获得10
34秒前
BOB发布了新的文献求助10
34秒前
小二郎应助ccc采纳,获得10
34秒前
34秒前
morena应助lwl采纳,获得20
35秒前
Sg完成签到,获得积分10
35秒前
36秒前
orixero应助伊可采纳,获得10
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264886
求助须知:如何正确求助?哪些是违规求助? 2904855
关于积分的说明 8331749
捐赠科研通 2575234
什么是DOI,文献DOI怎么找? 1399714
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353