Development of a novel prognostic signature derived from super-enhancer-associated gene by machine learning in head and neck squamous cell carcinoma

增强子 头颈部 头颈部鳞状细胞癌 基因签名 签名(拓扑) 基底细胞 基因 头颈部癌 癌症研究 主管(地质) 生物 医学 肿瘤科 计算生物学 内科学 基因表达 癌症 遗传学 外科 数学 几何学 古生物学
作者
An Wang,He X,Jin Li,Pengfei Diao,Jie Cheng
出处
期刊:Oral Oncology [Elsevier]
卷期号:159: 107016-107016
标识
DOI:10.1016/j.oraloncology.2024.107016
摘要

Dysregulated super-enhancer (SE) results in aberrant transcription that drives cancer initiation and progression. SEs have been demonstrated as novel promising diagnostic/prognostic biomarkers and therapeutic targets across multiple human cancers. Here, we sought to develop a novel prognostic signature derived from SE-associated genes for head and neck squamous cell carcinoma (HNSCC). SE was identified from H3K27ac ChIP-seq datasets in HNSCC cell lines by ROSE algorithm and SE-associated genes were further mapped and functionally annotated. A total number of 133 SE-associated genes with mRNA upregulation and prognostic significance was screened via differentially-expressed genes (DEGs) and Cox regression analyses. These candidates were subjected for prognostic model constructions by machine learning approaches using three independent HNSCC cohorts (TCGA-HNSC dataset as training cohort, GSE41613 and GSE42743 as validation cohorts). Among dozens of prognostic models, the random survival forest algorithm (RSF) stood out with the best performance as evidenced by the highest average concordance index (C-index). A prognostic nomogram integrating this SE-associated gene signature (SEAGS) plus tumor size demonstrated satisfactory predictive power and excellent calibration and discrimination. Moreover, WNT7A from SEARG was validated as a putative oncogene with transcriptional activation by SE to promote malignant phenotypes. Pharmacological disruption of SE functions by BRD4 or EP300 inhibitor significantly impaired tumor growth and diminished WNT7A expression in a HNSCC patient-derived xenograft model. Taken together, our results establish a novel, robust SE-derived prognostic model for HNSCC and suggest the translational potentials of SEs as promising therapeutic targets for HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剧院的饭桶完成签到,获得积分10
1秒前
清爽白开水完成签到 ,获得积分10
1秒前
丘比特应助那年采纳,获得10
1秒前
1秒前
astral完成签到,获得积分10
1秒前
细腻雨莲完成签到,获得积分20
2秒前
vvwwvv完成签到 ,获得积分10
2秒前
898发布了新的文献求助10
2秒前
2秒前
四毛完成签到,获得积分10
2秒前
ZK999完成签到,获得积分10
3秒前
clay_park完成签到,获得积分10
4秒前
顺利紫山完成签到,获得积分10
4秒前
898完成签到 ,获得积分20
4秒前
SYLH应助金色热浪采纳,获得10
4秒前
5秒前
kiki完成签到 ,获得积分10
5秒前
金丝铁线完成签到,获得积分10
5秒前
爱听歌的冷安完成签到,获得积分10
6秒前
欧欧欧导发布了新的文献求助10
6秒前
7秒前
热情醉冬完成签到,获得积分10
7秒前
8秒前
JamesPei应助四毛采纳,获得10
8秒前
Majinheng完成签到,获得积分10
9秒前
Lee发布了新的文献求助10
9秒前
鱼柒完成签到 ,获得积分10
10秒前
10秒前
SYLH应助满意的契采纳,获得10
10秒前
xx完成签到,获得积分10
10秒前
泡泡鱼完成签到 ,获得积分10
10秒前
11秒前
爆米花应助默默月光采纳,获得10
11秒前
绝不延毕完成签到,获得积分10
11秒前
领导范儿应助邵恒采纳,获得10
12秒前
朴素的书琴完成签到,获得积分20
12秒前
超级李包包完成签到,获得积分10
12秒前
MeiLing完成签到,获得积分10
12秒前
xx发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556269
求助须知:如何正确求助?哪些是违规求助? 3131813
关于积分的说明 9393417
捐赠科研通 2831860
什么是DOI,文献DOI怎么找? 1556519
邀请新用户注册赠送积分活动 726691
科研通“疑难数据库(出版商)”最低求助积分说明 716012