Development of a novel prognostic signature derived from super-enhancer-associated gene by machine learning in head and neck squamous cell carcinoma

增强子 头颈部 头颈部鳞状细胞癌 基因签名 签名(拓扑) 基底细胞 基因 头颈部癌 癌症研究 主管(地质) 生物 医学 肿瘤科 计算生物学 内科学 基因表达 癌症 遗传学 外科 数学 几何学 古生物学
作者
An Wang,He X,Jin Li,Pengfei Diao,Jie Cheng
出处
期刊:Oral Oncology [Elsevier BV]
卷期号:159: 107016-107016
标识
DOI:10.1016/j.oraloncology.2024.107016
摘要

Dysregulated super-enhancer (SE) results in aberrant transcription that drives cancer initiation and progression. SEs have been demonstrated as novel promising diagnostic/prognostic biomarkers and therapeutic targets across multiple human cancers. Here, we sought to develop a novel prognostic signature derived from SE-associated genes for head and neck squamous cell carcinoma (HNSCC). SE was identified from H3K27ac ChIP-seq datasets in HNSCC cell lines by ROSE algorithm and SE-associated genes were further mapped and functionally annotated. A total number of 133 SE-associated genes with mRNA upregulation and prognostic significance was screened via differentially-expressed genes (DEGs) and Cox regression analyses. These candidates were subjected for prognostic model constructions by machine learning approaches using three independent HNSCC cohorts (TCGA-HNSC dataset as training cohort, GSE41613 and GSE42743 as validation cohorts). Among dozens of prognostic models, the random survival forest algorithm (RSF) stood out with the best performance as evidenced by the highest average concordance index (C-index). A prognostic nomogram integrating this SE-associated gene signature (SEAGS) plus tumor size demonstrated satisfactory predictive power and excellent calibration and discrimination. Moreover, WNT7A from SEARG was validated as a putative oncogene with transcriptional activation by SE to promote malignant phenotypes. Pharmacological disruption of SE functions by BRD4 or EP300 inhibitor significantly impaired tumor growth and diminished WNT7A expression in a HNSCC patient-derived xenograft model. Taken together, our results establish a novel, robust SE-derived prognostic model for HNSCC and suggest the translational potentials of SEs as promising therapeutic targets for HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助GXP采纳,获得10
刚刚
1秒前
Jisoo520完成签到 ,获得积分10
2秒前
杪杪完成签到,获得积分10
2秒前
2秒前
Harper发布了新的文献求助10
4秒前
4秒前
Dawn发布了新的文献求助10
8秒前
维维完成签到,获得积分10
8秒前
9秒前
linfordlu完成签到,获得积分0
13秒前
彭于晏应助9Songs采纳,获得10
13秒前
14秒前
14秒前
Artra_Soong完成签到,获得积分10
16秒前
16秒前
18秒前
研友_VZG7GZ应助yjo采纳,获得10
19秒前
扇子发布了新的文献求助20
19秒前
21秒前
23秒前
李健应助zhangwenjie采纳,获得10
23秒前
23秒前
daoketuo完成签到,获得积分10
23秒前
daoketuo发布了新的文献求助10
26秒前
唐若冰完成签到,获得积分10
27秒前
积极向上山楂片完成签到,获得积分10
27秒前
嗯啊完成签到,获得积分10
28秒前
29秒前
29秒前
phil完成签到,获得积分10
31秒前
含蓄的赛君完成签到,获得积分10
32秒前
xixi发布了新的文献求助10
34秒前
zyh完成签到 ,获得积分10
35秒前
35秒前
36秒前
36秒前
37秒前
38秒前
积极擎汉完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532