P10.22.B PREDICTING INTRAOPERATIVE 5-ALA-INDUCED TUMOR FLUORESCENCE VIA MRI AND DEEP LEARNING IN GLIOMAS WITH RADIOGRAPHIC LOWER-GRADE CHARACTERISTICS

医学 胶质瘤 射线照相术 放射科 核医学 癌症研究
作者
Eric Suero Molina,Ghasem Azemi,Zeynep Özdemi̇r,Carlo Russo,A Valls Chavarria,Sidong Liu,Christian Thomas,Walter Stummer,Antonio Di Ieva
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_5): v60-v60
标识
DOI:10.1093/neuonc/noae144.198
摘要

Abstract BACKGROUND Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely resected to avoid undergrading. We aimed to analyze whether a deep learning model can predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). Material and Methods: The MRI images of gliomas lacking high-grade characteristics (necrosis, extended contrast-enhancement, a.o.) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a 10-fold cross-validation procedure. RESULTS We evaluated a cohort of 163 glioma patients categorized as fluorescent (n=83) or non-fluorescent (n=80). Our proposed approach’s performance was evaluated using metrics such as mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSION Our findings highlight the potential of a U-Net model, coupled with a random forest classifier, for intraoperative fluorescence prediction. We achieved good accuracy using advanced techniques such as deep learning-based tumor segmentation and Variational Autoencoder for radiomics feature extraction. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在你心里发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
3秒前
辣椒发布了新的文献求助10
4秒前
4秒前
4秒前
陶1122发布了新的文献求助10
5秒前
WRL发布了新的文献求助10
6秒前
wanci应助鲜艳的手链采纳,获得10
6秒前
Dead Cells发布了新的文献求助10
7秒前
Ogai发布了新的文献求助30
7秒前
8秒前
小铃铛发布了新的文献求助10
8秒前
10秒前
11秒前
12秒前
13秒前
14秒前
肖雪依完成签到,获得积分10
14秒前
深情安青应助张小愚采纳,获得10
15秒前
Owen应助Jacquielin采纳,获得10
16秒前
17秒前
张英俊发布了新的文献求助10
17秒前
lyf发布了新的文献求助10
17秒前
糊糊完成签到,获得积分20
17秒前
17秒前
我是老大应助劳永杰采纳,获得10
18秒前
18秒前
EthanChan发布了新的文献求助10
19秒前
辣椒完成签到,获得积分10
19秒前
20秒前
风荏完成签到,获得积分10
20秒前
开心成威发布了新的文献求助10
21秒前
阿水完成签到 ,获得积分10
21秒前
超帅的龙猫完成签到,获得积分20
23秒前
张英俊完成签到,获得积分20
23秒前
23秒前
烦了发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824