P10.22.B PREDICTING INTRAOPERATIVE 5-ALA-INDUCED TUMOR FLUORESCENCE VIA MRI AND DEEP LEARNING IN GLIOMAS WITH RADIOGRAPHIC LOWER-GRADE CHARACTERISTICS

医学 胶质瘤 射线照相术 放射科 核医学 癌症研究
作者
Eric Suero Molina,Ghasem Azemi,Zeynep Özdemi̇r,Carlo Russo,A Valls Chavarria,Sidong Liu,Christian Thomas,Walter Stummer,Antonio Di Ieva
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_5): v60-v60
标识
DOI:10.1093/neuonc/noae144.198
摘要

Abstract BACKGROUND Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely resected to avoid undergrading. We aimed to analyze whether a deep learning model can predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). Material and Methods: The MRI images of gliomas lacking high-grade characteristics (necrosis, extended contrast-enhancement, a.o.) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a 10-fold cross-validation procedure. RESULTS We evaluated a cohort of 163 glioma patients categorized as fluorescent (n=83) or non-fluorescent (n=80). Our proposed approach’s performance was evaluated using metrics such as mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSION Our findings highlight the potential of a U-Net model, coupled with a random forest classifier, for intraoperative fluorescence prediction. We achieved good accuracy using advanced techniques such as deep learning-based tumor segmentation and Variational Autoencoder for radiomics feature extraction. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矛盾空间发布了新的文献求助10
刚刚
丸子完成签到,获得积分10
1秒前
健忘惜海完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
miss发布了新的文献求助10
2秒前
大媛大靳吃地瓜完成签到,获得积分10
2秒前
哈基米发布了新的文献求助10
2秒前
微笑芒果完成签到 ,获得积分0
3秒前
陈乃雪完成签到,获得积分20
3秒前
坚强的契完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
小远远完成签到,获得积分10
4秒前
艾席文完成签到,获得积分10
5秒前
衫楠如画完成签到,获得积分10
5秒前
乙醇发布了新的文献求助10
5秒前
6秒前
7秒前
陈乃雪发布了新的文献求助10
7秒前
李爱国应助miss采纳,获得10
7秒前
Lucas应助萝卜青菜采纳,获得10
7秒前
8秒前
zhang568完成签到 ,获得积分10
9秒前
干净绮烟发布了新的文献求助10
10秒前
科瑞斯王完成签到 ,获得积分10
10秒前
11秒前
淡淡菠萝完成签到 ,获得积分10
11秒前
12秒前
12秒前
端庄煎饼完成签到,获得积分10
13秒前
无花果应助萝卜青菜采纳,获得10
13秒前
H与K完成签到,获得积分10
13秒前
汉堡包应助坚强的契采纳,获得10
14秒前
猫猫叫cat完成签到,获得积分10
14秒前
14秒前
Zhangqiuyu完成签到 ,获得积分10
14秒前
清淮发布了新的文献求助10
14秒前
沉默的谷秋完成签到,获得积分10
14秒前
cjmlslddjd完成签到,获得积分10
15秒前
JIinghong发布了新的文献求助10
17秒前
CC发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424645
求助须知:如何正确求助?哪些是违规求助? 4538996
关于积分的说明 14164586
捐赠科研通 4455962
什么是DOI,文献DOI怎么找? 2444024
邀请新用户注册赠送积分活动 1435084
关于科研通互助平台的介绍 1412452