已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

P10.22.B PREDICTING INTRAOPERATIVE 5-ALA-INDUCED TUMOR FLUORESCENCE VIA MRI AND DEEP LEARNING IN GLIOMAS WITH RADIOGRAPHIC LOWER-GRADE CHARACTERISTICS

医学 胶质瘤 射线照相术 放射科 核医学 癌症研究
作者
Eric Suero Molina,Ghasem Azemi,Zeynep Özdemi̇r,Carlo Russo,A Valls Chavarria,Sidong Liu,Christian Thomas,Walter Stummer,Antonio Di Ieva
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_5): v60-v60
标识
DOI:10.1093/neuonc/noae144.198
摘要

Abstract BACKGROUND Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely resected to avoid undergrading. We aimed to analyze whether a deep learning model can predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). Material and Methods: The MRI images of gliomas lacking high-grade characteristics (necrosis, extended contrast-enhancement, a.o.) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a 10-fold cross-validation procedure. RESULTS We evaluated a cohort of 163 glioma patients categorized as fluorescent (n=83) or non-fluorescent (n=80). Our proposed approach’s performance was evaluated using metrics such as mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSION Our findings highlight the potential of a U-Net model, coupled with a random forest classifier, for intraoperative fluorescence prediction. We achieved good accuracy using advanced techniques such as deep learning-based tumor segmentation and Variational Autoencoder for radiomics feature extraction. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小钥匙完成签到 ,获得积分10
刚刚
岩中花述完成签到 ,获得积分10
刚刚
1秒前
冷傲曼冬发布了新的文献求助10
2秒前
奶奶的龙应助tomato大王采纳,获得30
3秒前
科研通AI2S应助tomato大王采纳,获得10
3秒前
啦啦啦完成签到 ,获得积分10
3秒前
Criminology34应助研友_qZ6V1Z采纳,获得10
5秒前
粽子发布了新的文献求助10
6秒前
852应助冷傲曼冬采纳,获得10
10秒前
李健应助粽子采纳,获得10
12秒前
17秒前
临子完成签到,获得积分10
17秒前
劉浏琉完成签到,获得积分10
18秒前
Yantuobio完成签到,获得积分10
19秒前
浮生完成签到 ,获得积分10
21秒前
搞怪文轩发布了新的文献求助10
23秒前
23秒前
小珂完成签到,获得积分10
24秒前
爱科研的小凡完成签到,获得积分10
25秒前
李健应助小C同学采纳,获得10
25秒前
orixero应助vanshaw.vs采纳,获得10
28秒前
冯露瑶发布了新的文献求助10
28秒前
和谐续完成签到 ,获得积分10
30秒前
32秒前
34秒前
咸咸完成签到 ,获得积分10
34秒前
35秒前
36秒前
Redde发布了新的文献求助10
37秒前
英俊的铭应助冯露瑶采纳,获得10
39秒前
39秒前
肖恩发布了新的文献求助10
39秒前
Lucas应助搞怪文轩采纳,获得10
39秒前
39秒前
Orange应助虚拟的宛筠采纳,获得10
40秒前
41秒前
吃一口芝士完成签到 ,获得积分10
42秒前
科目三应助frances采纳,获得10
42秒前
wanci应助科研通管家采纳,获得10
44秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622109
求助须知:如何正确求助?哪些是违规求助? 4706972
关于积分的说明 14938218
捐赠科研通 4767933
什么是DOI,文献DOI怎么找? 2552109
邀请新用户注册赠送积分活动 1514284
关于科研通互助平台的介绍 1474957