P10.22.B PREDICTING INTRAOPERATIVE 5-ALA-INDUCED TUMOR FLUORESCENCE VIA MRI AND DEEP LEARNING IN GLIOMAS WITH RADIOGRAPHIC LOWER-GRADE CHARACTERISTICS

医学 胶质瘤 射线照相术 放射科 核医学 癌症研究
作者
Eric Suero Molina,Ghasem Azemi,Zeynep Özdemi̇r,Carlo Russo,A Valls Chavarria,Sidong Liu,Christian Thomas,Walter Stummer,Antonio Di Ieva
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_5): v60-v60
标识
DOI:10.1093/neuonc/noae144.198
摘要

Abstract BACKGROUND Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely resected to avoid undergrading. We aimed to analyze whether a deep learning model can predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). Material and Methods: The MRI images of gliomas lacking high-grade characteristics (necrosis, extended contrast-enhancement, a.o.) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a 10-fold cross-validation procedure. RESULTS We evaluated a cohort of 163 glioma patients categorized as fluorescent (n=83) or non-fluorescent (n=80). Our proposed approach’s performance was evaluated using metrics such as mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSION Our findings highlight the potential of a U-Net model, coupled with a random forest classifier, for intraoperative fluorescence prediction. We achieved good accuracy using advanced techniques such as deep learning-based tumor segmentation and Variational Autoencoder for radiomics feature extraction. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FLASH发布了新的文献求助10
1秒前
2秒前
3秒前
顾矜应助李白白白采纳,获得10
3秒前
lrid完成签到,获得积分10
5秒前
6秒前
ao发布了新的文献求助10
6秒前
浮游应助草木采纳,获得10
7秒前
陈杰发布了新的文献求助10
8秒前
Criminology34应助宋佳荟采纳,获得10
9秒前
CipherSage应助的卢小马采纳,获得10
9秒前
dddnnn发布了新的文献求助10
9秒前
活泼的石头完成签到,获得积分10
10秒前
可爱的函函应助发文必过采纳,获得10
11秒前
11秒前
魔幻的心情完成签到,获得积分10
12秒前
李明完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
na发布了新的文献求助10
16秒前
Baili发布了新的文献求助10
16秒前
周文丽发布了新的文献求助10
17秒前
18秒前
18秒前
123完成签到,获得积分20
19秒前
yzq完成签到 ,获得积分10
19秒前
dddnnn完成签到,获得积分10
19秒前
21秒前
22秒前
22秒前
鹤轩完成签到,获得积分20
23秒前
小马甲应助一汪无前采纳,获得10
23秒前
23秒前
三腔二囊管完成签到,获得积分10
23秒前
25秒前
25秒前
25秒前
xy发布了新的文献求助10
26秒前
sdysdbd完成签到,获得积分10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905