Volumetric efficiency degradation prediction of axial piston pump based on friction and wear test

活塞(光学) 泄漏(经济) 圆柱 机械工程 材料科学 活塞泵 可靠性(半导体) 柱塞泵 转速 容积效率 机械 汽车工程 工程类 功率(物理) 物理 波前 光学 量子力学 柱塞 经济 宏观经济学
作者
W Yin,Jin Zhang,Xu Wang,Qiyao Zhang,Ying Li
出处
期刊:Heliyon [Elsevier]
卷期号:10 (17): e37334-e37334
标识
DOI:10.1016/j.heliyon.2024.e37334
摘要

The axial piston pump (APP) is being developed towards higher pressure and higher rotational speeds to enhance operational power density. The piston-cylinder friction pair is a critical component of the APP. Due to its lack of self-compensation capability, the leakage of the piston-cylinder friction pair escalates rapidly under increasingly severe wear conditions. An innovative method for predicting the performance degradation and lifespan of APPs based on friction and wear tests has been proposed. This method can effectively predict the performance degradation trends of APPs under different operating conditions. The actual contact force on the piston pair (PP) during operation is determined through dynamic analysis. Friction and wear tests were conducted on 38CrMoAl piston and ZCuPb15Sn8 cylinder materials under various conditions using a testing apparatus. Utilizing friction and wear theory, the volumetric efficiency of APP under various operating conditions was derived as a function of operational time. The reliability of the theoretical analysis was validated through leakage tests on the APP. The results indicate that volumetric efficiency decreases exponentially with increasing working pressure at rated speed. This research provides theoretical guidance and an experimental foundation for the failure prediction of volumetric efficiency degradation in APP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助王小志采纳,获得10
刚刚
詹密完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
酷波er应助NEMO采纳,获得10
3秒前
3秒前
3秒前
3秒前
情怀应助shirleeyeahe采纳,获得10
3秒前
4秒前
元元应助xzy采纳,获得20
4秒前
泥花完成签到,获得积分10
4秒前
247793325完成签到,获得积分20
4秒前
眼睛大的冰岚完成签到,获得积分10
4秒前
YY完成签到 ,获得积分10
4秒前
5秒前
雨天慢行完成签到,获得积分10
5秒前
韦威风发布了新的文献求助10
5秒前
科目三应助深情的不评采纳,获得10
5秒前
飞快的梦易完成签到,获得积分10
6秒前
Akim应助1b采纳,获得10
6秒前
末岛完成签到,获得积分10
6秒前
sweetbearm应助benben采纳,获得10
6秒前
6秒前
7秒前
科研通AI5应助今今采纳,获得10
7秒前
通~发布了新的文献求助10
7秒前
YY完成签到,获得积分10
7秒前
首席医官完成签到,获得积分10
8秒前
坚定迎天完成签到,获得积分10
8秒前
Zzzoey发布了新的文献求助10
9秒前
搜集达人应助小罗飞飞飞采纳,获得10
9秒前
詹卫卫完成签到 ,获得积分10
9秒前
9秒前
宇_发布了新的文献求助20
9秒前
10秒前
esdeath发布了新的文献求助10
10秒前
云轩完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794