氧化应激
抗氧化剂
脂质代谢
化学
餐食
食品科学
生物化学
作者
Li Li,Yumei Wang,Xiaoyan Zeng,Ying Hu,Ji Zhang,Bin Wang,Shangxing Chen
标识
DOI:10.1016/j.ijbiomac.2024.136186
摘要
Non-alcoholic fatty liver disease (NAFLD) plays an increasingly significant threat to human health. In this study, the processing by-products of Litsea cubeba fruit meal were defatted by ultrasound-assisted methods, then the acetone-precipitated protein of L. cubeba (LCP) was obtained and structural analysis was performed. LCP was hydrolyzed by a two-step sequential hydrolysis method using alcalase and papain. Subsequently, antioxidant peptide fraction (IV2) was isolated and identified from the resultant hydrolysate through membrane ultrafiltration, Sephadex G-15 chromatography, and liquid chromatograph mass spectrometer (LC-MS). Animal experimentation indicated the potential of IV2 to mitigate hepatic steatosis. Moreover, IV2 could effectively reduce oxidative stress-induced damage by modulating the Keap1-Nrf2 pathway to activate downstream heme oxygenase-1 (HO-1) and NAD(P) H quinone oxidoreductase 1 (NQO1). Integrating metabolomics and transcriptomics revealed enrichment in pathways associated with glycerolipid metabolism and fatty acid β-oxidation, suggesting the principal mechanisms underlying IV2's ameliorative effects on NAFLD. Transcriptome sequencing identified 3092 up-regulated and 3010 down-regulated genes following IV2 treatment. Interaction analyses based on different lipid compositions (DELs) and differentially expressed genes (DEGs) indicated that IV2 primarily alleviated hepatic steatosis by modulating peroxisome proliferator-activated receptor α (PPAR-α) related pathways, thereby augmenting fatty acid β-oxidation within liver cells. These results indicate that IV2 shows potential in improving high-fat diet (HFD)-induced NAFLD, with improved fatty acid β-oxidation and reduced triglyceride biosynthesis emerging as underlying mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI