Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning

计算机科学 强化学习 分布式计算 资源配置 边缘计算 GSM演进的增强数据速率 人工智能 计算机网络
作者
Cong Wang,Wang Yao-ming,Ying Yuan,Sancheng Peng,Guorui Li,Pengfei Yin
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106621-106621
标识
DOI:10.1016/j.neunet.2024.106621
摘要

Vehicular edge computing (VEC), a promising paradigm for the development of emerging intelligent transportation systems, can provide lower service latency for vehicular applications. However, it is still a challenge to fulfill the requirements of such applications with stringent latency requirements in the VEC system with limited resources. In addition, existing methods focus on handling the offloading task in a certain time slot with statically allocated resources, but ignore the heterogeneous tasks' different resource requirements, resulting in resource wastage. To solve the real-time task offloading and heterogeneous resource allocation problem in VEC system, we propose a decentralized solution based on the attention mechanism and recurrent neural networks (RNN) with a multi-agent distributed deep deterministic policy gradient (AR-MAD4PG). First, to address the partial observability of agents, we construct a shared agent graph and propose a periodic communication mechanism that enables edge nodes to aggregate information from other edge nodes. Second, to help agents better understand the current system state, we design an RNN-based feature extraction network to capture the historical state and resource allocation information of the VEC system. Thirdly, to tackle the challenges of excessive joint observation-action space and ineffective information interference, we adopt the multi-head attention mechanism to compress the dimension of the observation-action space of agents. Finally, we build a simulation model based on the actual vehicle trajectories, and the experimental results show that our proposed method outperforms the existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜘猪侠zx完成签到,获得积分10
3秒前
冰霜雨露完成签到 ,获得积分10
3秒前
Lucas应助司空豁采纳,获得10
3秒前
13831555290完成签到,获得积分10
5秒前
5秒前
开朗熊猫发布了新的文献求助10
6秒前
上官若男应助Docgrace采纳,获得10
6秒前
烟花应助bobo采纳,获得10
7秒前
7秒前
Ava应助阿南采纳,获得10
7秒前
8秒前
8秒前
xy发布了新的文献求助10
8秒前
JW关闭了JW文献求助
8秒前
lll完成签到,获得积分20
9秒前
勤奋尔冬完成签到 ,获得积分10
9秒前
10秒前
ljyimu发布了新的文献求助10
10秒前
柯一一应助zhaoxuelian采纳,获得10
11秒前
舍予发布了新的文献求助10
12秒前
柯一一应助Rayoo采纳,获得10
12秒前
沛沛发布了新的文献求助10
13秒前
Simlove发布了新的文献求助10
13秒前
思源应助碧蓝丹烟采纳,获得10
13秒前
14秒前
cr发布了新的文献求助10
14秒前
水木应助王大D采纳,获得10
14秒前
对阳光过敏的非洲仔完成签到,获得积分10
14秒前
orixero应助我是张铁柱·采纳,获得10
14秒前
bobo完成签到 ,获得积分10
16秒前
ccy完成签到 ,获得积分10
16秒前
lll发布了新的文献求助10
17秒前
wu8577应助兰天采纳,获得10
17秒前
紫色奶萨发布了新的文献求助10
18秒前
健壮的怜烟应助YC采纳,获得20
18秒前
NanArtist发布了新的文献求助30
19秒前
成就的紫伊完成签到,获得积分20
20秒前
21秒前
Solarenergy发布了新的文献求助10
21秒前
zzz完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105