Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning

计算机科学 强化学习 分布式计算 资源配置 边缘计算 GSM演进的增强数据速率 人工智能 计算机网络
作者
Cong Wang,Wang Yao-ming,Ying Yuan,Sancheng Peng,Guorui Li,Pengfei Yin
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106621-106621
标识
DOI:10.1016/j.neunet.2024.106621
摘要

Vehicular edge computing (VEC), a promising paradigm for the development of emerging intelligent transportation systems, can provide lower service latency for vehicular applications. However, it is still a challenge to fulfill the requirements of such applications with stringent latency requirements in the VEC system with limited resources. In addition, existing methods focus on handling the offloading task in a certain time slot with statically allocated resources, but ignore the heterogeneous tasks' different resource requirements, resulting in resource wastage. To solve the real-time task offloading and heterogeneous resource allocation problem in VEC system, we propose a decentralized solution based on the attention mechanism and recurrent neural networks (RNN) with a multi-agent distributed deep deterministic policy gradient (AR-MAD4PG). First, to address the partial observability of agents, we construct a shared agent graph and propose a periodic communication mechanism that enables edge nodes to aggregate information from other edge nodes. Second, to help agents better understand the current system state, we design an RNN-based feature extraction network to capture the historical state and resource allocation information of the VEC system. Thirdly, to tackle the challenges of excessive joint observation-action space and ineffective information interference, we adopt the multi-head attention mechanism to compress the dimension of the observation-action space of agents. Finally, we build a simulation model based on the actual vehicle trajectories, and the experimental results show that our proposed method outperforms the existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CH完成签到,获得积分20
1秒前
灵巧的十八完成签到 ,获得积分10
3秒前
leo完成签到 ,获得积分10
3秒前
小苔藓完成签到 ,获得积分10
11秒前
自有龙骧完成签到 ,获得积分10
15秒前
大模型应助优雅惜雪采纳,获得10
15秒前
CAST1347完成签到,获得积分10
23秒前
du2002完成签到,获得积分10
23秒前
williamwzt完成签到,获得积分20
23秒前
bzdjsmw完成签到 ,获得积分10
29秒前
氨气完成签到 ,获得积分0
30秒前
小公完成签到,获得积分10
31秒前
Vicky完成签到 ,获得积分10
34秒前
1b完成签到,获得积分10
35秒前
结实擎苍完成签到 ,获得积分10
38秒前
38秒前
黄74185296完成签到,获得积分10
39秒前
Zhaowx完成签到,获得积分10
41秒前
43秒前
shelly完成签到,获得积分10
43秒前
cc完成签到,获得积分10
44秒前
优雅惜雪发布了新的文献求助10
45秒前
52秒前
橙汁完成签到,获得积分10
52秒前
汶溢完成签到,获得积分10
52秒前
Rabbit完成签到 ,获得积分10
53秒前
他们叫我小伟完成签到 ,获得积分10
1分钟前
Lucas应助cc采纳,获得10
1分钟前
aa完成签到,获得积分10
1分钟前
苏钰完成签到,获得积分10
1分钟前
1分钟前
薰硝壤应助科研通管家采纳,获得10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
领导范儿应助辛勤紫雪采纳,获得10
1分钟前
失眠的香蕉完成签到 ,获得积分10
1分钟前
小赞完成签到,获得积分10
1分钟前
周二完成签到 ,获得积分10
1分钟前
自信的网络完成签到 ,获得积分10
1分钟前
fransiccarey完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056640
求助须知:如何正确求助?哪些是违规求助? 2713111
关于积分的说明 7434713
捐赠科研通 2358205
什么是DOI,文献DOI怎么找? 1249317
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596250