Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera

计算机科学 计算机视觉 人工智能 障碍物 机器人 目标检测 特征(语言学) RGB颜色模型 测距 点云 实时计算 分割 电信 哲学 语言学 法学 政治学
作者
Zhefan Xu,Xiaoyang Zhan,Yumeng Xiu,Christopher Suzuki,Kenji Shimada
出处
期刊:IEEE robotics and automation letters 卷期号:9 (1): 651-658 被引量:42
标识
DOI:10.1109/lra.2023.3334683
摘要

Deploying autonomous robots in crowded indoor environments usually requires them to have accurate dynamic obstacle perception. Although plenty of previous works in the autonomous driving field have investigated the 3D object detection problem, the usage of dense point clouds from a heavy Light Detection and Ranging (LiDAR) sensor and their high computation cost for learning-based data processing make those methods not applicable to small robots, such as vision-based UAVs with small onboard computers. To address this issue, we propose a lightweight 3D dynamic obstacle detection and tracking (DODT) method based on an RGB-D camera, which is designed for low-power robots with limited computing power. Our method adopts a novel ensemble detection strategy, combining multiple computationally efficient but low-accuracy detectors to achieve real-time high-accuracy obstacle detection. Besides, we introduce a new feature-based data association and tracking method to prevent mismatches utilizing point clouds' statistical features. In addition, our system includes an optional and auxiliary learning-based module to enhance the obstacle detection range and dynamic obstacle identification. The proposed method is implemented in a small quadcopter, and the results show that our method can achieve the lowest position error (0.11 m) and a comparable velocity error (0.23 m/s) across the benchmarking algorithms running on the robot's onboard computer. The flight experiments prove that the tracking results from the proposed method can make the robot efficiently alter its trajectory for navigating dynamic environments. Our software is available on GitHub 1 as an open-source ROS package.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
max发布了新的文献求助10
刚刚
fjnm完成签到,获得积分10
1秒前
Steve完成签到,获得积分10
1秒前
1秒前
欣喜的火龙果完成签到,获得积分10
1秒前
我可爱死学习了完成签到,获得积分20
1秒前
2秒前
4秒前
风格化橙发布了新的文献求助10
4秒前
awaibi发布了新的文献求助10
5秒前
48662发布了新的文献求助10
5秒前
爆米花应助奋斗金连采纳,获得10
6秒前
6秒前
welbeck完成签到,获得积分10
8秒前
悦己完成签到,获得积分10
8秒前
奕霖发布了新的文献求助10
8秒前
yuyuyu发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
伊伊完成签到,获得积分10
11秒前
12秒前
13秒前
Hinsen发布了新的文献求助10
13秒前
可爱的日记本完成签到 ,获得积分10
15秒前
能干的小霸王关注了科研通微信公众号
15秒前
15秒前
等等有力气完成签到,获得积分10
18秒前
奋斗金连发布了新的文献求助10
19秒前
脑洞疼应助www111采纳,获得10
19秒前
dichloro发布了新的文献求助10
19秒前
20秒前
48662完成签到,获得积分10
20秒前
20秒前
DrKe完成签到,获得积分10
21秒前
英姑应助无私的砖头采纳,获得10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707