Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera

计算机科学 计算机视觉 人工智能 障碍物 机器人 目标检测 特征(语言学) RGB颜色模型 测距 点云 实时计算 分割 电信 哲学 语言学 法学 政治学
作者
Zhefan Xu,Xiaoyang Zhan,Yumeng Xiu,Christopher Suzuki,Kenji Shimada
出处
期刊:IEEE robotics and automation letters 卷期号:9 (1): 651-658 被引量:18
标识
DOI:10.1109/lra.2023.3334683
摘要

Deploying autonomous robots in crowded indoor environments usually requires them to have accurate dynamic obstacle perception. Although plenty of previous works in the autonomous driving field have investigated the 3D object detection problem, the usage of dense point clouds from a heavy Light Detection and Ranging (LiDAR) sensor and their high computation cost for learning-based data processing make those methods not applicable to small robots, such as vision-based UAVs with small onboard computers. To address this issue, we propose a lightweight 3D dynamic obstacle detection and tracking (DODT) method based on an RGB-D camera, which is designed for low-power robots with limited computing power. Our method adopts a novel ensemble detection strategy, combining multiple computationally efficient but low-accuracy detectors to achieve real-time high-accuracy obstacle detection. Besides, we introduce a new feature-based data association and tracking method to prevent mismatches utilizing point clouds' statistical features. In addition, our system includes an optional and auxiliary learning-based module to enhance the obstacle detection range and dynamic obstacle identification. The proposed method is implemented in a small quadcopter, and the results show that our method can achieve the lowest position error (0.11 m) and a comparable velocity error (0.23 m/s) across the benchmarking algorithms running on the robot's onboard computer. The flight experiments prove that the tracking results from the proposed method can make the robot efficiently alter its trajectory for navigating dynamic environments. Our software is available on GitHub 1 as an open-source ROS package.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芽芽配茄子完成签到,获得积分10
刚刚
刚刚
1秒前
无花果应助cyuan采纳,获得10
1秒前
Grace发布了新的文献求助30
1秒前
糖不太甜完成签到,获得积分10
1秒前
summer发布了新的文献求助10
1秒前
dew应助朵朵采纳,获得10
2秒前
热心海云发布了新的文献求助10
3秒前
3秒前
3秒前
岩追研完成签到,获得积分10
3秒前
孟寐以求发布了新的文献求助20
3秒前
3秒前
keep完成签到,获得积分10
4秒前
务实寒天发布了新的文献求助10
4秒前
jming87发布了新的文献求助10
4秒前
Maggie完成签到,获得积分10
4秒前
南屿完成签到,获得积分10
4秒前
zikk233完成签到,获得积分10
4秒前
多一完成签到,获得积分10
4秒前
从容的丹南完成签到 ,获得积分10
5秒前
ch完成签到,获得积分10
5秒前
小Z发布了新的文献求助10
5秒前
5秒前
小破网完成签到 ,获得积分0
6秒前
汉堡包应助aaaiii采纳,获得30
7秒前
8秒前
淀粉肠发布了新的文献求助10
8秒前
夜离殇发布了新的文献求助10
8秒前
8秒前
Grace完成签到,获得积分10
9秒前
如常发布了新的文献求助10
9秒前
summer完成签到,获得积分10
9秒前
打打应助沉默南露采纳,获得10
9秒前
爆米花应助2240920060采纳,获得10
9秒前
jiangqingquan完成签到,获得积分10
9秒前
lily完成签到,获得积分10
10秒前
10秒前
心心爱学习完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017