Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera

计算机科学 计算机视觉 人工智能 障碍物 机器人 目标检测 特征(语言学) RGB颜色模型 测距 点云 实时计算 分割 电信 哲学 语言学 法学 政治学
作者
Zhefan Xu,Xiaoyang Zhan,Yumeng Xiu,Christopher Suzuki,Kenji Shimada
出处
期刊:IEEE robotics and automation letters 卷期号:9 (1): 651-658 被引量:18
标识
DOI:10.1109/lra.2023.3334683
摘要

Deploying autonomous robots in crowded indoor environments usually requires them to have accurate dynamic obstacle perception. Although plenty of previous works in the autonomous driving field have investigated the 3D object detection problem, the usage of dense point clouds from a heavy Light Detection and Ranging (LiDAR) sensor and their high computation cost for learning-based data processing make those methods not applicable to small robots, such as vision-based UAVs with small onboard computers. To address this issue, we propose a lightweight 3D dynamic obstacle detection and tracking (DODT) method based on an RGB-D camera, which is designed for low-power robots with limited computing power. Our method adopts a novel ensemble detection strategy, combining multiple computationally efficient but low-accuracy detectors to achieve real-time high-accuracy obstacle detection. Besides, we introduce a new feature-based data association and tracking method to prevent mismatches utilizing point clouds' statistical features. In addition, our system includes an optional and auxiliary learning-based module to enhance the obstacle detection range and dynamic obstacle identification. The proposed method is implemented in a small quadcopter, and the results show that our method can achieve the lowest position error (0.11 m) and a comparable velocity error (0.23 m/s) across the benchmarking algorithms running on the robot's onboard computer. The flight experiments prove that the tracking results from the proposed method can make the robot efficiently alter its trajectory for navigating dynamic environments. Our software is available on GitHub 1 as an open-source ROS package.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Yin采纳,获得10
刚刚
科研通AI6应助shuaideyapi采纳,获得10
刚刚
qu发布了新的文献求助80
刚刚
Nuyoah丶09发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
bkagyin应助mobius采纳,获得10
3秒前
ding应助复方蛋酥卷采纳,获得20
3秒前
4秒前
王威发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
7秒前
7秒前
7秒前
jhb发布了新的文献求助30
7秒前
.....发布了新的文献求助10
8秒前
文艺明杰发布了新的文献求助10
8秒前
guositing完成签到,获得积分10
9秒前
深情安青应助花填错了地采纳,获得30
10秒前
11秒前
同志同志发布了新的文献求助10
12秒前
12秒前
镓氧锌钇铀应助收皮皮采纳,获得10
12秒前
ssssen发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
feeuoo完成签到,获得积分20
14秒前
Luna完成签到,获得积分10
15秒前
At发布了新的文献求助10
15秒前
15秒前
Ava应助blue2021采纳,获得10
16秒前
Babe1934发布了新的文献求助10
16秒前
wfs完成签到,获得积分10
16秒前
16秒前
feeuoo发布了新的文献求助10
17秒前
机灵念寒发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481669
求助须知:如何正确求助?哪些是违规求助? 4582673
关于积分的说明 14386112
捐赠科研通 4511427
什么是DOI,文献DOI怎么找? 2472323
邀请新用户注册赠送积分活动 1458599
关于科研通互助平台的介绍 1432119