Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera

计算机科学 计算机视觉 人工智能 障碍物 机器人 目标检测 特征(语言学) RGB颜色模型 测距 点云 实时计算 分割 电信 哲学 语言学 法学 政治学
作者
Zhefan Xu,Xiaoyang Zhan,Yumeng Xiu,Christopher Suzuki,Kenji Shimada
出处
期刊:IEEE robotics and automation letters 卷期号:9 (1): 651-658 被引量:10
标识
DOI:10.1109/lra.2023.3334683
摘要

Deploying autonomous robots in crowded indoor environments usually requires them to have accurate dynamic obstacle perception.Although plenty of previous works in the autonomous driving field have investigated the 3D object detection problem, the usage of dense point clouds from a heavy Light Detection and Ranging (LiDAR) sensor and their high computation cost for learning-based data processing make those methods not applicable to small robots, such as vision-based UAVs with small onboard computers.To address this issue, we propose a lightweight 3D dynamic obstacle detection and tracking (DODT) method based on an RGB-D camera, which is designed for low-power robots with limited computing power.Our method adopts a novel ensemble detection strategy, combining multiple computationally efficient but low-accuracy detectors to achieve real-time high-accuracy obstacle detection.Besides, we introduce a new feature-based data association and tracking method to prevent mismatches utilizing point clouds' statistical features.In addition, our system includes an optional and auxiliary learning-based module to enhance the obstacle detection range and dynamic obstacle identification.The proposed method is implemented in a small quadcopter, and the results show that our method can achieve the lowest position error (0.11m) and a comparable velocity error (0.23m/s) across the benchmarking algorithms running on the robot's onboard computer.The flight experiments prove that the tracking results from the proposed method can make the robot efficiently alter its trajectory for navigating dynamic environments.Our software is available on GitHub 1 as an open-source ROS package..

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤凤完成签到 ,获得积分10
1秒前
4秒前
居居应助李荷花采纳,获得10
4秒前
4秒前
阿芜发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
7秒前
猪猪猪发布了新的文献求助30
8秒前
今后应助科研通管家采纳,获得20
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得30
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得20
9秒前
liu应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
BaiX应助科研通管家采纳,获得10
10秒前
拧宁完成签到,获得积分10
10秒前
田様应助dd采纳,获得10
10秒前
ayj关闭了ayj文献求助
10秒前
wzwz发布了新的文献求助10
10秒前
12秒前
蒋子龙完成签到,获得积分10
14秒前
贾不可发布了新的文献求助10
14秒前
SciGPT应助wzwz采纳,获得10
16秒前
乐观乐枫发布了新的文献求助10
16秒前
17秒前
17秒前
乐乐应助bruce233采纳,获得10
17秒前
18秒前
研友_xnEOX8发布了新的文献求助20
22秒前
和谐蛋蛋完成签到,获得积分10
23秒前
苏梗发布了新的文献求助10
23秒前
dd发布了新的文献求助10
23秒前
25秒前
归海亦云发布了新的文献求助10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170173
求助须知:如何正确求助?哪些是违规求助? 2821426
关于积分的说明 7934020
捐赠科研通 2481663
什么是DOI,文献DOI怎么找? 1321976
科研通“疑难数据库(出版商)”最低求助积分说明 633447
版权声明 602595