Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera

计算机科学 计算机视觉 人工智能 障碍物 机器人 目标检测 特征(语言学) RGB颜色模型 测距 点云 实时计算 分割 电信 语言学 哲学 政治学 法学
作者
Zhefan Xu,Xiaoyang Zhan,Yumeng Xiu,Christopher Suzuki,Kenji Shimada
出处
期刊:IEEE robotics and automation letters 卷期号:9 (1): 651-658 被引量:18
标识
DOI:10.1109/lra.2023.3334683
摘要

Deploying autonomous robots in crowded indoor environments usually requires them to have accurate dynamic obstacle perception. Although plenty of previous works in the autonomous driving field have investigated the 3D object detection problem, the usage of dense point clouds from a heavy Light Detection and Ranging (LiDAR) sensor and their high computation cost for learning-based data processing make those methods not applicable to small robots, such as vision-based UAVs with small onboard computers. To address this issue, we propose a lightweight 3D dynamic obstacle detection and tracking (DODT) method based on an RGB-D camera, which is designed for low-power robots with limited computing power. Our method adopts a novel ensemble detection strategy, combining multiple computationally efficient but low-accuracy detectors to achieve real-time high-accuracy obstacle detection. Besides, we introduce a new feature-based data association and tracking method to prevent mismatches utilizing point clouds' statistical features. In addition, our system includes an optional and auxiliary learning-based module to enhance the obstacle detection range and dynamic obstacle identification. The proposed method is implemented in a small quadcopter, and the results show that our method can achieve the lowest position error (0.11 m) and a comparable velocity error (0.23 m/s) across the benchmarking algorithms running on the robot's onboard computer. The flight experiments prove that the tracking results from the proposed method can make the robot efficiently alter its trajectory for navigating dynamic environments. Our software is available on GitHub 1 as an open-source ROS package.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tender完成签到,获得积分10
1秒前
2秒前
领导范儿应助scitester采纳,获得10
2秒前
标致小翠发布了新的文献求助10
3秒前
Bonnie发布了新的文献求助10
3秒前
情怀应助Djnsbj采纳,获得10
3秒前
wyj完成签到,获得积分20
4秒前
研友_J8Dbbn完成签到,获得积分10
5秒前
brucezheng发布了新的文献求助10
5秒前
5秒前
5秒前
大敏完成签到,获得积分10
8秒前
9秒前
十六发布了新的文献求助10
10秒前
可靠的凝海完成签到,获得积分10
10秒前
调皮嫣娆发布了新的文献求助10
10秒前
牛牛发布了新的文献求助10
10秒前
A阿澍完成签到,获得积分10
11秒前
11秒前
浅色墨水发布了新的文献求助10
11秒前
紫烨完成签到,获得积分10
12秒前
情怀应助毛子涵采纳,获得10
13秒前
聂越发布了新的文献求助10
13秒前
yznfly应助曾珍采纳,获得50
16秒前
16秒前
当里个当发布了新的文献求助10
16秒前
土豆你个西红柿完成签到 ,获得积分10
17秒前
自然秋柳完成签到 ,获得积分10
17秒前
18秒前
标致绮露发布了新的文献求助10
18秒前
淮h发布了新的文献求助10
19秒前
20秒前
肖敏完成签到,获得积分10
20秒前
69发布了新的文献求助10
20秒前
香蕉觅云应助zgdzhj采纳,获得10
20秒前
QC发布了新的文献求助10
21秒前
21秒前
DENG发布了新的文献求助20
21秒前
21秒前
Akim应助zzz采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511940
关于积分的说明 11161056
捐赠科研通 3246726
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403