铜绿微囊藻
斑马鱼
内分泌系统
激素
生殖毒性
性腺体指数
生物
睾酮(贴片)
内分泌学
内科学
毒性
医学
人口
基因
生物化学
遗传学
细菌
环境卫生
生殖力
蓝藻
作者
Kang Ouyang,Qian Zhang,L Wang,Hui Yang,Ya He,Dapeng Li,Li Li
标识
DOI:10.1016/j.envpol.2023.123021
摘要
The ecological risk posed by MCs-producing M. aeruginosa and elevated ammonia to fish in actual aquatic environments remains uncertain. To address this knowledge gap, we conducted simulations to investigate the endocrine-reproductive toxicity of prolonged exposure (45 d) to Microcystis aeruginosa (2 × 10ˆ6 cells/mL) and 30 mg/L total ammonia nitrogen (TAN) in zebrafish under environmentally relevant conditions. Our results showed that exposure to M. aeruginosa significantly inhibited the body weight, increased gonadosomatic index (GSI), delayed oocyte development, and disrupted endocrine hormonal balance (reduced gonadotropin-releasing hormone (GnRH), and increased estradiol (E2) and testosterone (T)). Mechanistically, it should be attributed to the over-expression of hypothalamic-pituitary-gonadal-liver (HPGL) axis-related genes (cyp11a and cyp17) induced by M. aeruginosa. On the other hand, TAN exposure caused mild damage to zebrafish ovarian tissue and promoted an increase of T levels by inducing the upregulation of steroid hormone synthesis gene (3βhsd) expression in the ovary. It is worth noting that the dysregulation of E2/T ratio in zebrafish ovaries may be attributed to the inhibition of cyp19a1a by both M. aeruginosa and TAN. These results were further confirmed by changes in steroidogenic enzymes activities in the M. aeruginosa or TAN treated groups. Our findings indicated that exposure to M. aeruginosa and TAN had adverse impacts on the reproductive system of zebrafish. And the combined exposure of M. aeruginosa and TAN had more severe effects on the body weight, GSI, pathological changes, hormone levels and HPGL-axis related gene expression in female zebrafish. These results provide compelling evidence regarding the potential risks for reproductive health associated with M. aeruginosa and TAN in eutrophic water bodies experiencing M. aeruginosa blooms, and contribute to the development of effective strategies for monitoring and managing these toxins in aquatic ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI