A deep learning model to predict Ki-67 positivity in oral squamous cell carcinoma

计算机科学 人工智能 数字化病理学 深度学习 苏木精 免疫组织化学 分割 H&E染色 病理 医学
作者
Francesco Martino,Gennaro Ilardi,Silvia Varricchio,Daniela Russo,Rosa Maria Di Crescenzo,Stefania Staibano,Francesco Merolla
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:15: 100354-100354
标识
DOI:10.1016/j.jpi.2023.100354
摘要

Anatomical pathology is undergoing its third revolution, transitioning from analogical to digital pathology and incorporating new artificial intelligence technologies into clinical practice. Aside from classification, detection, and segmentation models, predictive models are gaining traction since they can impact diagnostic processes and laboratory activity, lowering consumable usage and turnaround time. Our research aimed to create a deep-learning model to generate synthetic Ki-67 immunohistochemistry from Haematoxylin and Eosin (H&E) stained images. We used 175 oral squamous cell carcinoma (OSCC) from the University Federico II’s Pathology Unit’s archives to train our model to generate 4 Tissue Micro Arrays (TMAs). We sectioned one slide from each TMA, first stained with H&E and then re-stained with anti-Ki-67 immunohistochemistry (IHC). In digitised slides, cores were disarrayed, and the matching cores of the 2 stained were aligned to construct a dataset to train a Pix2Pix algorithm to convert H&E images to IHC. Pathologists could recognise the synthetic images in only half of the cases in a specially designed likelihood test. Hence, our model produced realistic synthetic images. We next used QuPath to quantify IHC positivity, achieving remarkable levels of agreement between genuine and synthetic IHC. Furthermore, a categorical analysis employing 3 Ki-67 positivity cut-offs (5%, 10%, and 15%) revealed high positive-predictive values. Our model is a promising tool for collecting Ki-67 positivity information directly on H&E slides, reducing laboratory demand and improving patient management. It is also a valuable option for smaller laboratories to easily and quickly screen bioptic samples and prioritise them in a digital pathology workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助aq22采纳,获得10
2秒前
邱邱发布了新的文献求助50
2秒前
6秒前
包容的初南完成签到,获得积分10
7秒前
费尔明娜完成签到,获得积分10
10秒前
11秒前
嘉木完成签到 ,获得积分10
11秒前
12秒前
12341完成签到,获得积分10
13秒前
Sherlock完成签到,获得积分10
13秒前
14秒前
阿斯蒂和琴酒完成签到 ,获得积分10
14秒前
15秒前
15秒前
科研顺利发布了新的文献求助100
15秒前
starofjlu完成签到,获得积分10
15秒前
16秒前
干净的时光应助粒粒采纳,获得20
16秒前
完美世界应助Sekiro采纳,获得10
17秒前
19秒前
起風了发布了新的文献求助10
20秒前
crains完成签到 ,获得积分10
20秒前
zj发布了新的文献求助10
22秒前
22秒前
LH发布了新的文献求助10
22秒前
ding应助MY20240406采纳,获得10
22秒前
23秒前
zho应助臭图图采纳,获得10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159748
求助须知:如何正确求助?哪些是违规求助? 2810660
关于积分的说明 7889023
捐赠科研通 2469717
什么是DOI,文献DOI怎么找? 1315035
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012