A deep learning model to predict Ki-67 positivity in oral squamous cell carcinoma

计算机科学 人工智能 数字化病理学 深度学习 苏木精 免疫组织化学 分割 H&E染色 病理 医学
作者
Francesco De Martino,Gennaro Ilardi,Silvia Varricchio,Daniela Russo,Rosa Maria Di Crescenzo,Stefania Staibano,Francesco Merolla
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:15: 100354-100354 被引量:6
标识
DOI:10.1016/j.jpi.2023.100354
摘要

Anatomical pathology is undergoing its third revolution, transitioning from analogical to digital pathology and incorporating new artificial intelligence technologies into clinical practice. Aside from classification, detection, and segmentation models, predictive models are gaining traction since they can impact diagnostic processes and laboratory activity, lowering consumable usage and turnaround time. Our research aimed to create a deep-learning model to generate synthetic Ki-67 immunohistochemistry from Haematoxylin and Eosin (H&E) stained images. We used 175 oral squamous cell carcinoma (OSCC) from the University Federico II's Pathology Unit's archives to train our model to generate 4 Tissue Micro Arrays (TMAs). We sectioned one slide from each TMA, first stained with H&E and then re-stained with anti-Ki-67 immunohistochemistry (IHC). In digitised slides, cores were disarrayed, and the matching cores of the 2 stained were aligned to construct a dataset to train a Pix2Pix algorithm to convert H&E images to IHC. Pathologists could recognise the synthetic images in only half of the cases in a specially designed likelihood test. Hence, our model produced realistic synthetic images. We next used QuPath to quantify IHC positivity, achieving remarkable levels of agreement between genuine and synthetic IHC. Furthermore, a categorical analysis employing 3 Ki-67 positivity cut-offs (5%, 10%, and 15%) revealed high positive-predictive values. Our model is a promising tool for collecting Ki-67 positivity information directly on H&E slides, reducing laboratory demand and improving patient management. It is also a valuable option for smaller laboratories to easily and quickly screen bioptic samples and prioritise them in a digital pathology workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Zzzhou23完成签到,获得积分10
3秒前
喵喵发布了新的文献求助10
3秒前
热心玉兰发布了新的文献求助10
4秒前
kuka007发布了新的文献求助10
6秒前
Zzzhou23发布了新的文献求助30
6秒前
kizaru完成签到,获得积分10
6秒前
嘟嘟嘟嘟完成签到 ,获得积分10
7秒前
11秒前
11秒前
11秒前
水木年华完成签到,获得积分10
13秒前
15秒前
cccyq发布了新的文献求助10
15秒前
jiangjiang完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
16秒前
18秒前
时生完成签到 ,获得积分10
19秒前
zhangyu应助缥缈的机器猫采纳,获得10
19秒前
安然发布了新的文献求助10
22秒前
积极的香菇完成签到 ,获得积分10
22秒前
23秒前
23秒前
热心玉兰完成签到,获得积分10
24秒前
27秒前
lxy发布了新的文献求助10
28秒前
30秒前
浩气长存完成签到 ,获得积分10
30秒前
iday完成签到,获得积分10
33秒前
34秒前
xinxin完成签到,获得积分20
35秒前
Leeu应助缥缈的机器猫采纳,获得10
35秒前
慕青应助安然采纳,获得10
35秒前
35秒前
35秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652