亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning model to predict Ki-67 positivity in oral squamous cell carcinoma

计算机科学 人工智能 数字化病理学 深度学习 苏木精 免疫组织化学 分割 H&E染色 病理 医学
作者
Francesco De Martino,Gennaro Ilardi,Silvia Varricchio,Daniela Russo,Rosa Maria Di Crescenzo,Stefania Staibano,Francesco Merolla
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:15: 100354-100354 被引量:6
标识
DOI:10.1016/j.jpi.2023.100354
摘要

Anatomical pathology is undergoing its third revolution, transitioning from analogical to digital pathology and incorporating new artificial intelligence technologies into clinical practice. Aside from classification, detection, and segmentation models, predictive models are gaining traction since they can impact diagnostic processes and laboratory activity, lowering consumable usage and turnaround time. Our research aimed to create a deep-learning model to generate synthetic Ki-67 immunohistochemistry from Haematoxylin and Eosin (H&E) stained images. We used 175 oral squamous cell carcinoma (OSCC) from the University Federico II's Pathology Unit's archives to train our model to generate 4 Tissue Micro Arrays (TMAs). We sectioned one slide from each TMA, first stained with H&E and then re-stained with anti-Ki-67 immunohistochemistry (IHC). In digitised slides, cores were disarrayed, and the matching cores of the 2 stained were aligned to construct a dataset to train a Pix2Pix algorithm to convert H&E images to IHC. Pathologists could recognise the synthetic images in only half of the cases in a specially designed likelihood test. Hence, our model produced realistic synthetic images. We next used QuPath to quantify IHC positivity, achieving remarkable levels of agreement between genuine and synthetic IHC. Furthermore, a categorical analysis employing 3 Ki-67 positivity cut-offs (5%, 10%, and 15%) revealed high positive-predictive values. Our model is a promising tool for collecting Ki-67 positivity information directly on H&E slides, reducing laboratory demand and improving patient management. It is also a valuable option for smaller laboratories to easily and quickly screen bioptic samples and prioritise them in a digital pathology workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dynamoo发布了新的文献求助30
4秒前
田様应助木林山水采纳,获得10
5秒前
mmyhn发布了新的文献求助10
5秒前
7秒前
陈陈发布了新的文献求助10
9秒前
故城完成签到 ,获得积分10
14秒前
16秒前
星星发布了新的文献求助10
16秒前
21秒前
23秒前
wanci应助陈陈采纳,获得10
23秒前
含着朵白云完成签到 ,获得积分10
23秒前
秋裤发布了新的文献求助10
29秒前
顾矜应助星星采纳,获得30
31秒前
ZAJsci完成签到 ,获得积分10
34秒前
luyuran发布了新的文献求助10
34秒前
37秒前
39秒前
阳阳发布了新的文献求助10
42秒前
佩吉完成签到 ,获得积分10
43秒前
医探发布了新的文献求助10
45秒前
善学以致用应助Ni采纳,获得10
46秒前
48秒前
阳阳完成签到,获得积分10
49秒前
51秒前
51秒前
dynamoo发布了新的文献求助10
52秒前
57秒前
Ni发布了新的文献求助10
57秒前
58秒前
静_完成签到 ,获得积分10
1分钟前
1分钟前
木林山水发布了新的文献求助10
1分钟前
医探完成签到,获得积分10
1分钟前
左左曦完成签到,获得积分10
1分钟前
修辛完成签到 ,获得积分10
1分钟前
1分钟前
uikymh完成签到 ,获得积分0
1分钟前
Kevin完成签到 ,获得积分10
1分钟前
郝宇完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564775
求助须知:如何正确求助?哪些是违规求助? 4649490
关于积分的说明 14689018
捐赠科研通 4591475
什么是DOI,文献DOI怎么找? 2519172
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846