The `Why' behind including `Y' in your imputation model

插补(统计学) 计量经济学 计算机科学 统计 数学 缺少数据
作者
Lucy D’Agostino McGowan,Sarah C. Lotspeich,Staci A. Hepler
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.17434
摘要

Missing data is a common challenge when analyzing epidemiological data, and imputation is often used to address this issue. Here, we investigate the scenario where a covariate used in an analysis has missingness and will be imputed. There are recommendations to include the outcome from the analysis model in the imputation model for missing covariates, but it is not necessarily clear if this recommendation always holds and why this is sometimes true. We examine deterministic imputation (i.e., single imputation with fixed values) and stochastic imputation (i.e., single or multiple imputation with random values) methods and their implications for estimating the relationship between the imputed covariate and the outcome. We mathematically demonstrate that including the outcome variable in imputation models is not just a recommendation but a requirement to achieve unbiased results when using stochastic imputation methods. Moreover, we dispel common misconceptions about deterministic imputation models and demonstrate why the outcome should not be included in these models. This paper aims to bridge the gap between imputation in theory and in practice, providing mathematical derivations to explain common statistical recommendations. We offer a better understanding of the considerations involved in imputing missing covariates and emphasize when it is necessary to include the outcome variable in the imputation model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ发布了新的文献求助20
1秒前
1秒前
TJW完成签到 ,获得积分10
1秒前
小杨发布了新的文献求助10
1秒前
科研三井泽完成签到,获得积分10
2秒前
犹豫嚣发布了新的文献求助10
2秒前
一叶应助卢佳瑶采纳,获得10
4秒前
chali48发布了新的文献求助10
6秒前
纪不愁完成签到,获得积分10
7秒前
所所应助wxyllxx采纳,获得10
7秒前
Hello应助foxp3采纳,获得10
7秒前
FashionBoy应助momo采纳,获得10
7秒前
8秒前
标致的苡发布了新的文献求助10
8秒前
8秒前
9秒前
外向的雁玉完成签到,获得积分10
10秒前
11秒前
14秒前
祁曼岚完成签到,获得积分10
14秒前
吃的完成签到,获得积分10
14秒前
蒲云海发布了新的文献求助10
15秒前
zhzhzh发布了新的文献求助10
15秒前
星辰大海应助111采纳,获得10
16秒前
wch071完成签到,获得积分10
17秒前
三年半完成签到,获得积分10
19秒前
可爱的函函应助学术智子采纳,获得10
19秒前
淳于安筠完成签到,获得积分10
22秒前
桐桐应助YHK采纳,获得30
23秒前
狂野未来完成签到,获得积分20
24秒前
桐桐应助wxhy采纳,获得10
25秒前
JamesPei应助wxyllxx采纳,获得10
27秒前
faye完成签到,获得积分10
28秒前
慕青应助旷野天采纳,获得10
30秒前
30秒前
大力大楚发布了新的文献求助20
31秒前
思源应助dd采纳,获得10
33秒前
chali48完成签到,获得积分10
33秒前
33秒前
踏实滑板完成签到 ,获得积分10
35秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458