已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

STEPSBI: Quick spatiotemporal fusion with coarse- and fine-resolution scale transformation errors and pixel-based synthesis base image pair

转化(遗传学) 像素 计算机科学 遥感 图像分辨率 融合 比例(比率) 时间分辨率 人工智能 土地覆盖 图像融合 加权 计算机视觉 模式识别(心理学) 图像(数学) 地理 地图学 土地利用 物理 放射科 工程类 哲学 土木工程 基因 医学 量子力学 化学 生物化学 语言学
作者
Yuyang Ma,Yonglin Shen,Guoling Shen,Jie Wang,Wen Xiao,HE Hui-yang,Chuli Hu,Kai Qin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 1-15 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.10.016
摘要

Spatiotemporal fusion (STF) is crucial for reconciling the conflict between temporal and spatial resolutions of remote sensing observations. However, fusing images in heterogeneous areas remains challenging under continuous missing values. Moreover, most current STF methods only consider temporal errors and disregard the spatial scale error in time variation. Therefore, we proposed a Quick Spatiotemporal Fusion with Coarse- and Fine-Resolution Scale Transformation Errors and Pixel-Based Synthesis Base Image Pair (STEPSBI). First, the optimal pixel-based image synthesis strategy was designed using all available fine- and coarse-resolution images. Then, the scale transformation error (STE) of coarse-resolution downscaling to fine-resolution in temporal variation was quantified. And a residual term was introduced to reduce the prediction error from the temporal variation. Finally, the spatial scale and temporal errors were corrected using the results of super-pixel segmentation as spatial weights. This model has two strengths: (1) Pixel-based image synthesis alleviates the absence of base images under continuous missing values; and (2) STE correction restores spatial details of heterogeneous areas in rapid land cover change. In scenarios of continuous missing images, abrupt land cover changes, and high-resolution heterogeneity, we evaluated STEPSBI, the Gap Filling and Savitzky–Golay filtering method (GF-SG), the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), the Flexible Spatiotemporal DAta Fusion (FSDAF), the cross-attention-based adaptive weighting fusion network (CAFE), and the Multi-scene Spatiotemporal Fusion Network (MUSTFN). The results indicate that STEPSBI yields better overall performance than other models in cropland, woodland, grassland, and other land cover types. Furthermore, ablation experiments demonstrated that each component improved the model's performance. In addition, STEPSBI had higher fusion efficiency because it was developed on the Google Earth Engine cloud computing platform. Therefore, STEPSBI was feasible for advancing fine monitoring of spatiotemporal image fusion under continuous missing values and heterogeneous surfaces. The program of STEPBSI is freely available at: https://code.earthengine.google.com/684844aa42f64fa6b4eebe3bc0dd6483.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤独梦安发布了新的文献求助10
1秒前
我是大兴发布了新的文献求助10
5秒前
在水一方应助su采纳,获得10
7秒前
8秒前
9秒前
囿于昼夜发布了新的文献求助10
13秒前
13秒前
14秒前
KDS驳回了双黄应助
15秒前
pakkkho发布了新的文献求助10
17秒前
寒食应助哇哇哇哇采纳,获得10
18秒前
囿于昼夜完成签到,获得积分10
18秒前
19秒前
Takakura发布了新的文献求助10
19秒前
20秒前
ss完成签到,获得积分10
21秒前
tina发布了新的文献求助10
21秒前
Jasper应助pakkkho采纳,获得10
22秒前
keyanzhazha给keyanzhazha的求助进行了留言
22秒前
科研通AI2S应助新陈采纳,获得10
23秒前
24秒前
蘑菇尹发布了新的文献求助10
25秒前
25秒前
孤独梦安完成签到,获得积分10
27秒前
王九八发布了新的文献求助30
27秒前
29秒前
杳鸢应助雾眠气泡水采纳,获得30
31秒前
Takakura发布了新的文献求助10
32秒前
盐植物完成签到,获得积分10
32秒前
37秒前
tenz完成签到,获得积分10
42秒前
tina完成签到,获得积分10
42秒前
44秒前
44秒前
Tethys完成签到 ,获得积分10
44秒前
45秒前
从容映易完成签到 ,获得积分10
46秒前
Owen应助深情的巧蕊采纳,获得10
46秒前
48秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265338
求助须知:如何正确求助?哪些是违规求助? 2905273
关于积分的说明 8333247
捐赠科研通 2575616
什么是DOI,文献DOI怎么找? 1399971
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471