STEPSBI: Quick spatiotemporal fusion with coarse- and fine-resolution scale transformation errors and pixel-based synthesis base image pair

转化(遗传学) 像素 计算机科学 遥感 图像分辨率 融合 比例(比率) 时间分辨率 人工智能 土地覆盖 图像融合 加权 计算机视觉 模式识别(心理学) 图像(数学) 地理 地图学 土地利用 医学 生物化学 化学 语言学 哲学 物理 土木工程 放射科 量子力学 工程类 基因
作者
Yuyang Ma,Yonglin Shen,Guoling Shen,Jie Wang,Wen Xiao,Huiyang He,Chuli Hu,Kai Qin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 1-15 被引量:2
标识
DOI:10.1016/j.isprsjprs.2023.10.016
摘要

Spatiotemporal fusion (STF) is crucial for reconciling the conflict between temporal and spatial resolutions of remote sensing observations. However, fusing images in heterogeneous areas remains challenging under continuous missing values. Moreover, most current STF methods only consider temporal errors and disregard the spatial scale error in time variation. Therefore, we proposed a Quick Spatiotemporal Fusion with Coarse- and Fine-Resolution Scale Transformation Errors and Pixel-Based Synthesis Base Image Pair (STEPSBI). First, the optimal pixel-based image synthesis strategy was designed using all available fine- and coarse-resolution images. Then, the scale transformation error (STE) of coarse-resolution downscaling to fine-resolution in temporal variation was quantified. And a residual term was introduced to reduce the prediction error from the temporal variation. Finally, the spatial scale and temporal errors were corrected using the results of super-pixel segmentation as spatial weights. This model has two strengths: (1) Pixel-based image synthesis alleviates the absence of base images under continuous missing values; and (2) STE correction restores spatial details of heterogeneous areas in rapid land cover change. In scenarios of continuous missing images, abrupt land cover changes, and high-resolution heterogeneity, we evaluated STEPSBI, the Gap Filling and Savitzky–Golay filtering method (GF-SG), the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), the Flexible Spatiotemporal DAta Fusion (FSDAF), the cross-attention-based adaptive weighting fusion network (CAFE), and the Multi-scene Spatiotemporal Fusion Network (MUSTFN). The results indicate that STEPSBI yields better overall performance than other models in cropland, woodland, grassland, and other land cover types. Furthermore, ablation experiments demonstrated that each component improved the model's performance. In addition, STEPSBI had higher fusion efficiency because it was developed on the Google Earth Engine cloud computing platform. Therefore, STEPSBI was feasible for advancing fine monitoring of spatiotemporal image fusion under continuous missing values and heterogeneous surfaces. The program of STEPBSI is freely available at: https://code.earthengine.google.com/684844aa42f64fa6b4eebe3bc0dd6483.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czc发布了新的文献求助10
刚刚
1秒前
尼克11完成签到,获得积分10
1秒前
筱小筱发布了新的文献求助10
2秒前
呼呼呼完成签到,获得积分10
3秒前
3秒前
vicky完成签到,获得积分10
3秒前
lcj2022发布了新的文献求助10
3秒前
4秒前
faa发布了新的文献求助10
4秒前
4秒前
蜡笔小新完成签到,获得积分10
5秒前
我想@科研发布了新的文献求助10
5秒前
轻松的冥王星完成签到,获得积分10
5秒前
5秒前
安静店员完成签到,获得积分10
6秒前
Sunsetz完成签到,获得积分10
7秒前
大模型应助w1x2123采纳,获得10
7秒前
万能图书馆应助我想@科研采纳,获得10
8秒前
丘比特应助rtx00采纳,获得10
8秒前
AA发布了新的文献求助10
8秒前
8秒前
小半完成签到,获得积分10
9秒前
文和完成签到,获得积分10
10秒前
Ah发布了新的文献求助10
10秒前
123完成签到,获得积分10
11秒前
小毛线发布了新的文献求助10
12秒前
CodeCraft应助gi采纳,获得10
13秒前
霍小美完成签到,获得积分10
14秒前
14秒前
14秒前
旺仔不甜完成签到,获得积分10
14秒前
文和发布了新的文献求助10
14秒前
无花果应助Qx-Py采纳,获得10
15秒前
星辰大海应助南淮采纳,获得10
15秒前
wrzzz完成签到,获得积分10
16秒前
16秒前
在水一方应助Wwt采纳,获得10
18秒前
在下小绿发布了新的文献求助10
18秒前
英俊的铭应助klb13采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971078
求助须知:如何正确求助?哪些是违规求助? 3515742
关于积分的说明 11179305
捐赠科研通 3250852
什么是DOI,文献DOI怎么找? 1795501
邀请新用户注册赠送积分活动 875868
科研通“疑难数据库(出版商)”最低求助积分说明 805207