STEPSBI: Quick spatiotemporal fusion with coarse- and fine-resolution scale transformation errors and pixel-based synthesis base image pair

转化(遗传学) 像素 计算机科学 遥感 图像分辨率 融合 比例(比率) 时间分辨率 人工智能 土地覆盖 图像融合 加权 计算机视觉 模式识别(心理学) 图像(数学) 地理 地图学 土地利用 医学 生物化学 化学 语言学 哲学 物理 土木工程 放射科 量子力学 工程类 基因
作者
Yuyang Ma,Yonglin Shen,Guoling Shen,Jie Wang,Wen Xiao,HE Hui-yang,Chuli Hu,Kai Qin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 1-15 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.10.016
摘要

Spatiotemporal fusion (STF) is crucial for reconciling the conflict between temporal and spatial resolutions of remote sensing observations. However, fusing images in heterogeneous areas remains challenging under continuous missing values. Moreover, most current STF methods only consider temporal errors and disregard the spatial scale error in time variation. Therefore, we proposed a Quick Spatiotemporal Fusion with Coarse- and Fine-Resolution Scale Transformation Errors and Pixel-Based Synthesis Base Image Pair (STEPSBI). First, the optimal pixel-based image synthesis strategy was designed using all available fine- and coarse-resolution images. Then, the scale transformation error (STE) of coarse-resolution downscaling to fine-resolution in temporal variation was quantified. And a residual term was introduced to reduce the prediction error from the temporal variation. Finally, the spatial scale and temporal errors were corrected using the results of super-pixel segmentation as spatial weights. This model has two strengths: (1) Pixel-based image synthesis alleviates the absence of base images under continuous missing values; and (2) STE correction restores spatial details of heterogeneous areas in rapid land cover change. In scenarios of continuous missing images, abrupt land cover changes, and high-resolution heterogeneity, we evaluated STEPSBI, the Gap Filling and Savitzky–Golay filtering method (GF-SG), the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), the Flexible Spatiotemporal DAta Fusion (FSDAF), the cross-attention-based adaptive weighting fusion network (CAFE), and the Multi-scene Spatiotemporal Fusion Network (MUSTFN). The results indicate that STEPSBI yields better overall performance than other models in cropland, woodland, grassland, and other land cover types. Furthermore, ablation experiments demonstrated that each component improved the model's performance. In addition, STEPSBI had higher fusion efficiency because it was developed on the Google Earth Engine cloud computing platform. Therefore, STEPSBI was feasible for advancing fine monitoring of spatiotemporal image fusion under continuous missing values and heterogeneous surfaces. The program of STEPBSI is freely available at: https://code.earthengine.google.com/684844aa42f64fa6b4eebe3bc0dd6483.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
123完成签到,获得积分10
2秒前
善良香岚发布了新的文献求助10
2秒前
3秒前
3秒前
444完成签到,获得积分10
3秒前
任一发布了新的文献求助30
3秒前
莉莉发布了新的文献求助10
4秒前
Zoe发布了新的文献求助10
4秒前
Hover完成签到,获得积分10
4秒前
自然的茉莉完成签到,获得积分10
5秒前
5秒前
Mandy完成签到,获得积分10
5秒前
6秒前
脑洞疼应助qaq采纳,获得10
6秒前
世界尽头发布了新的文献求助10
6秒前
小二郎应助科研民工采纳,获得10
6秒前
7秒前
无奈满天发布了新的文献求助10
7秒前
8秒前
MADKAI发布了新的文献求助10
8秒前
8秒前
贪玩丸子完成签到,获得积分10
8秒前
神勇的雅香应助liutaili采纳,获得10
9秒前
KSGGS完成签到,获得积分10
9秒前
YANG关注了科研通微信公众号
9秒前
10秒前
10秒前
10秒前
99发布了新的文献求助10
11秒前
11秒前
科研通AI5应助qi采纳,获得10
11秒前
乐乐发布了新的文献求助10
12秒前
铸一字错发布了新的文献求助10
12秒前
受伤书文完成签到,获得积分10
13秒前
Yvonne发布了新的文献求助10
13秒前
13秒前
温柔的十三完成签到,获得积分10
13秒前
Ll发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759