Well-defined Ni3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis

过电位 电催化剂 双功能 塔菲尔方程 化学工程 碳纳米管 电化学 纳米颗粒 化学 材料科学 无机化学 纳米技术 电极 催化作用 有机化学 物理化学 工程类
作者
Wenbo Li,Kuo Liu,Shiqiang Feng,Yi Xiao,Linjie Zhang,Jing Mao,Qian Liu,Xijun Liu,Jun Luo,Lili Han
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:655: 726-735 被引量:40
标识
DOI:10.1016/j.jcis.2023.11.069
摘要

Alkaline H2-O2 fuel cells and water electrolysis are crucial for hydrogen energy recycling. However, the sluggish kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in an alkaline medium pose significant obstacles. Thus, it is imperative but challenging to develop highly efficient and stable non-precious metal electrocatalysts for alkaline HOR and HER. Here, we present the intriguing synthesis of well-defined Ni3N nanoparticles armored within an N-doped hollow carbon nanotube shell (Ni3N@NC) via the conversion of a hydrogen-bonded organic framework (HOF) to metal-organic framework (MOF), followed by high-temperature pyrolysis. As-developed Ni3N@NC demonstrates exceptional bifunctionality in alkaline HOR/HER electrocatalysis, with a high HOR limiting current density of 2.67 mA cm-2 comparable to the benchmark 20 wt% Pt/C, while achieving a lead in overpotential of 145 mV and stronger CO-tolerance. Additionally, it achieves a low overpotential of 21 mV to attain a HER current density of 10 mA cm-2 with long-term stability up to 340 h, both exceeding those of Pt/C. Structural analyses and electrochemical studies reveal that the remarkable bifunctional hydrogen electrocatalytic performance of Ni3N@NC can be ascribed to the synergistic coupling among the well-dispersed small-sized Ni3N nanoparticles, chain-mail structure, and optimized electronic structure enabled by strong metal-support interaction. Furthermore, theoretical calculations indicate that the high-efficiency HOR/HER observed in Ni3N@NC is attributed to the strong OH- affinity, moderate H adsorption, and enhanced water formation/dissociation ability of the Ni3N active sites. This work underscores the significance of rational structural design in enhancing performance and inspires further development of advanced nanostructures for efficient hydrogen electrocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanghaiyu完成签到,获得积分10
2秒前
科目三应助老默采纳,获得10
2秒前
3秒前
4秒前
贪玩飞柏发布了新的文献求助10
4秒前
5秒前
秦小荷完成签到,获得积分10
6秒前
利华尔完成签到,获得积分10
6秒前
7秒前
老默完成签到,获得积分10
7秒前
秦小荷发布了新的文献求助10
9秒前
小蘑菇应助无算浮白采纳,获得10
11秒前
打打应助尔尔采纳,获得10
12秒前
爱吃冻梨发布了新的文献求助10
14秒前
15秒前
16秒前
yi完成签到,获得积分20
17秒前
19秒前
SciGPT应助秦小荷采纳,获得10
20秒前
啦啦完成签到,获得积分10
21秒前
踏实机器猫完成签到 ,获得积分10
21秒前
充电宝应助孟相浩采纳,获得20
21秒前
华仔应助独特的绯采纳,获得10
21秒前
怕黑书翠发布了新的文献求助30
21秒前
顺利汉堡完成签到 ,获得积分10
22秒前
22秒前
萨芬完成签到,获得积分10
23秒前
23秒前
黑猫小苍完成签到,获得积分10
23秒前
24秒前
集力申完成签到,获得积分10
24秒前
你泽完成签到,获得积分20
24秒前
眼睛大盼兰完成签到 ,获得积分10
26秒前
26秒前
1111111发布了新的文献求助30
27秒前
漫步云端发布了新的文献求助10
28秒前
斯文败类应助怕黑书翠采纳,获得10
29秒前
尔尔完成签到,获得积分10
30秒前
Mingyu发布了新的文献求助10
30秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263