Well-defined Ni3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis

过电位 电催化剂 双功能 塔菲尔方程 化学工程 碳纳米管 电化学 纳米颗粒 化学 材料科学 无机化学 纳米技术 电极 催化作用 有机化学 物理化学 工程类
作者
Wenbo Li,Kuo Liu,Shiqiang Feng,Yi Xiao,Linjie Zhang,Jing Mao,Qian Liu,Xijun Liu,Jun Luo,Lili Han
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:655: 726-735 被引量:40
标识
DOI:10.1016/j.jcis.2023.11.069
摘要

Alkaline H2-O2 fuel cells and water electrolysis are crucial for hydrogen energy recycling. However, the sluggish kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in an alkaline medium pose significant obstacles. Thus, it is imperative but challenging to develop highly efficient and stable non-precious metal electrocatalysts for alkaline HOR and HER. Here, we present the intriguing synthesis of well-defined Ni3N nanoparticles armored within an N-doped hollow carbon nanotube shell (Ni3N@NC) via the conversion of a hydrogen-bonded organic framework (HOF) to metal-organic framework (MOF), followed by high-temperature pyrolysis. As-developed Ni3N@NC demonstrates exceptional bifunctionality in alkaline HOR/HER electrocatalysis, with a high HOR limiting current density of 2.67 mA cm-2 comparable to the benchmark 20 wt% Pt/C, while achieving a lead in overpotential of 145 mV and stronger CO-tolerance. Additionally, it achieves a low overpotential of 21 mV to attain a HER current density of 10 mA cm-2 with long-term stability up to 340 h, both exceeding those of Pt/C. Structural analyses and electrochemical studies reveal that the remarkable bifunctional hydrogen electrocatalytic performance of Ni3N@NC can be ascribed to the synergistic coupling among the well-dispersed small-sized Ni3N nanoparticles, chain-mail structure, and optimized electronic structure enabled by strong metal-support interaction. Furthermore, theoretical calculations indicate that the high-efficiency HOR/HER observed in Ni3N@NC is attributed to the strong OH- affinity, moderate H adsorption, and enhanced water formation/dissociation ability of the Ni3N active sites. This work underscores the significance of rational structural design in enhancing performance and inspires further development of advanced nanostructures for efficient hydrogen electrocatalysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欢欢发布了新的文献求助10
1秒前
无花果应助ctttt采纳,获得10
1秒前
彭于晏应助苹果绿采纳,获得10
1秒前
Hello应助哭泣的书兰采纳,获得10
2秒前
蓝天应助滑腻腻的小鱼采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
chen完成签到,获得积分20
3秒前
3秒前
思源应助sky采纳,获得10
4秒前
4秒前
九bai发布了新的文献求助10
4秒前
xuxugogo完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
现代小丸子完成签到 ,获得积分10
6秒前
fff完成签到,获得积分10
6秒前
6秒前
6秒前
精明寒松发布了新的文献求助10
6秒前
6秒前
7秒前
猫尔儿发布了新的文献求助10
7秒前
7秒前
111222发布了新的文献求助10
7秒前
7秒前
7秒前
国宝发布了新的文献求助10
8秒前
chen发布了新的文献求助10
8秒前
勤劳的斑马完成签到,获得积分10
8秒前
丘比特应助吴兴倩采纳,获得10
8秒前
能干雁凡发布了新的文献求助20
8秒前
9秒前
9秒前
cckk完成签到,获得积分10
9秒前
杨佳莉发布了新的文献求助20
9秒前
执着的白云关注了科研通微信公众号
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210