Edge-aware Correlation Learning for Unsupervised Progressive Homography Estimation

人工智能 单应性 计算机科学 计算机视觉 模式识别(心理学) 特征(语言学) GSM演进的增强数据速率 匹配(统计) 杠杆(统计) 判别式 数学 统计 语言学 哲学 投射试验 射影空间
作者
Xiaomei Feng,Qi Jia,Zikun Zhao,Yu Liu,Xinwei Xue,Xin Fan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2023.3331780
摘要

Homography estimation aligns image pairs in cross-views, which is a crucial and fundamental computer vision problem. Existing methods only consider correspondences of texture features for homography estimation, leading to unpleasant artifacts and misalignments introduced by mismatches, especially for low-texture image pairs. In contrast to others, we introduce intuitive structural information as an additional clue that is more sensitive to human vision and low-texture scenarios. In this paper, we propose an edge-aware unsupervised progressive network that couples texture and edge correlation to comprehensively explore potential matching features for homography estimation. To explore robust edge and texture features, we employ a multiscale network to capture feature pyramids with different receptive fields. Then, we design an edge-aware correlation module tailored for homography regression, which plugs in multiscale features to capture accurate correlation maps. Specifically, the edge-aware correlation module leverages the feature-selecting strategy for edge features to capture discriminative matching edges and further guides the texture correlation unit to focus on correctly matched textures. Finally, we leverage multiscale edge-aware correlation maps to predict homography progressively from coarse to fine. Experimental results demonstrate that our proposed method improves PSNR by 11.09% on the real large parallax dataset and reduces matching error by 32.04% on the synthetic COCO dataset, yielding more accurate alignment results than previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王子安应助科研通管家采纳,获得10
刚刚
核桃应助龙辉采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
卡卡西应助科研通管家采纳,获得10
1秒前
May应助科研通管家采纳,获得20
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
zys2001mezy应助科研通管家采纳,获得150
1秒前
whatever应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
小仙女212发布了新的文献求助10
2秒前
Rondab应助科研小郭采纳,获得10
3秒前
4秒前
lsn发布了新的文献求助10
4秒前
lilongcheng完成签到,获得积分10
4秒前
orixero应助Shu采纳,获得30
4秒前
梦之哆啦完成签到,获得积分10
5秒前
坚定如南完成签到 ,获得积分10
5秒前
CipherSage应助玛卡巴卡采纳,获得10
5秒前
5秒前
1123发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
可爱的函函应助334采纳,获得10
8秒前
9秒前
Yang完成签到,获得积分10
9秒前
519完成签到,获得积分10
10秒前
打打应助狂野绿竹采纳,获得10
10秒前
朴实尔容发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794