A comprehensive review on deep learning approaches for short-term load forecasting

计算机科学 波动性(金融) 稳健性(进化) 需求预测 需求响应 风险分析(工程) 持续性 运筹学 期限(时间) 工业工程 工程类 经济 计量经济学 业务 生态学 生物化学 化学 物理 电气工程 量子力学 生物 基因
作者
Yavuz Eren,İbrahim Beklan Küçükdemiral
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:189: 114031-114031 被引量:39
标识
DOI:10.1016/j.rser.2023.114031
摘要

The balance between supplied and demanded power is a crucial issue in the economic dispatching of electricity energy. With the emergence of renewable sources and data-driven approaches, demand-side or demand response (DR) programs have been applied to maintain this balance as accurately as possible. Short-term load forecasting (STLF) has a decisive impact on the success, sustainability, and performance of those programs. Forecasting customers' consumption over short or long time horizons allows distribution companies to establish new policies or modify strategies in terms of energy management, infrastructure planning, and budgeting. Deep learning (DL)-based approaches for STLF have been referenced for a long time, considering factors such as accuracy, various performance measures, volatility, and adverse effects of uncertainties in load demand. Hence, in this review, DL-based studies for the STLF problem have been considered. The studies have been classified by several titles, such as the provided method and main ideas, dataset specifications, uncertain-aware approaches, online solutions, and practical extensions to DR programs. The main contribution of this review is the ongoing exploration of STLF with DL models to reveal the research direction of the load forecasting problem in terms of the future-oriented integration of the key concepts of online, robustness, and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuesensu完成签到 ,获得积分10
刚刚
豌豆完成签到,获得积分10
1秒前
M先生完成签到,获得积分10
1秒前
2秒前
4秒前
科研通AI5应助sun采纳,获得10
4秒前
shitzu完成签到 ,获得积分10
5秒前
choco发布了新的文献求助10
7秒前
8秒前
李健的小迷弟应助sun采纳,获得10
8秒前
Jzhang应助liyuchen采纳,获得10
8秒前
魏伯安发布了新的文献求助30
8秒前
jjjjjj发布了新的文献求助30
10秒前
11秒前
伯赏诗霜发布了新的文献求助10
11秒前
糟糕的鹏飞完成签到 ,获得积分10
12秒前
12秒前
欢呼凡旋完成签到,获得积分10
13秒前
韩邹光完成签到,获得积分10
15秒前
xg发布了新的文献求助10
15秒前
16秒前
dktrrrr完成签到,获得积分10
16秒前
季生完成签到,获得积分10
19秒前
徐徐完成签到,获得积分10
19秒前
20秒前
20秒前
haku完成签到,获得积分10
22秒前
可爱的函函应助laodie采纳,获得10
24秒前
Singularity应助忆楠采纳,获得10
25秒前
26秒前
请叫我风吹麦浪应助PengHu采纳,获得30
27秒前
jjjjjj完成签到,获得积分10
27秒前
凝子老师发布了新的文献求助10
29秒前
29秒前
橙子fy16_发布了新的文献求助10
31秒前
cookie完成签到,获得积分10
31秒前
柒柒的小熊完成签到,获得积分10
32秒前
32秒前
Hello应助萌之痴痴采纳,获得10
33秒前
hahaer完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849