Hierarchical temporal transformer network for tool wear state recognition

稳健性(进化) 计算机科学 深度学习 变压器 数据挖掘 人工智能 模式识别(心理学) 工程类 机器学习 电压 生物化学 化学 电气工程 基因
作者
Zhongling Xue,Ni Chen,Youling Wu,Yinfei Yang,Liang Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102218-102218 被引量:12
标识
DOI:10.1016/j.aei.2023.102218
摘要

The accurate determination of the tool-wear state helps workers maximise tool utilisation while reducing waste. It also ensures the machining quality and improves the machining efficiency. This study proposed a deep learning network based on the self-attention mechanism that enabled global modeling and long-term dependence for better tool wear state recognition by cutting signals. The Hierarchical Temporal Transformer Network (HTT-Net) was constructed by improving the Swin Transformer backbone network to enable the global modeling of the input temporal sequence signal. The token merging layer is used to build a hierarchical feature map, that enables the model to continuously increase the receptive field and improve its global modeling capability. Self-attention calculation is performed on the temporal sequence data partition window, which reduces the complexity of the model from a quadratic into a linear form of the sequence length. The shifted window enables information interaction between non-overlapping windows, which can improve the global modeling capability of the model. PHM2010 public cutting data and TC4 milling data were used for model training and test. The results showed that the tool wear state recognition capability of HTT-Net on the PHM2010 dataset outperformed the models in existing studies, with up to 16.13% improvement in recognition accuracy on the relevant dataset. The recognition accuracy on the TC4 milling dataset can reach 98.87%, which further verified the actual application capability of the model. At last, The Q-Q graph analysis verified that the model had strong robustness and stability, and the ablation experiment verified that each module of the model had positive gain on the recognition results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古月完成签到,获得积分10
1秒前
Akim应助1111采纳,获得10
1秒前
2秒前
忆韵发布了新的文献求助10
3秒前
dongdong发布了新的文献求助10
4秒前
占囧完成签到,获得积分10
5秒前
十一完成签到,获得积分10
7秒前
bamboo完成签到 ,获得积分20
7秒前
7秒前
7秒前
徐一羊发布了新的文献求助10
7秒前
8秒前
邵裘完成签到,获得积分10
8秒前
10秒前
盛夏如花发布了新的文献求助10
10秒前
sdt完成签到,获得积分10
11秒前
13秒前
杳鸢应助仁爱的荷花采纳,获得20
13秒前
洁净方盒发布了新的文献求助10
14秒前
14秒前
啦啦啦发布了新的文献求助10
16秒前
PENG应助醉酒笑红尘采纳,获得10
17秒前
17秒前
17秒前
Caixtmx完成签到,获得积分10
18秒前
洁净方盒完成签到,获得积分20
19秒前
326503177发布了新的文献求助10
20秒前
21秒前
22秒前
24秒前
深情安青应助洁净方盒采纳,获得10
24秒前
共享精神应助玉宝儿采纳,获得10
25秒前
李健的小迷弟应助忆韵采纳,获得10
26秒前
问心完成签到,获得积分20
27秒前
2393843435发布了新的文献求助30
28秒前
搜集达人应助傅英俊采纳,获得10
28秒前
326503177完成签到,获得积分10
29秒前
漂泊2025完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516009
求助须知:如何正确求助?哪些是违规求助? 3098158
关于积分的说明 9238366
捐赠科研通 2793178
什么是DOI,文献DOI怎么找? 1532872
邀请新用户注册赠送积分活动 712408
科研通“疑难数据库(出版商)”最低求助积分说明 707256