Agent-based simulation model of panic buying behavior in urban public crisis events: A social network perspective

政府(语言学) 恐慌 城市化 过程(计算) 业务 透视图(图形) 心理学 经济 经济增长 计算机科学 语言学 操作系统 精神科 哲学 人工智能 焦虑
作者
Ruguo Fan,Qianyi Yao,Rongkai Chen,Rourou Qian
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:100: 105002-105002 被引量:16
标识
DOI:10.1016/j.scs.2023.105002
摘要

With the rapid growth of urban economies, accelerated urbanization has resulted in increasing urban public crisis events. The panic buying behavior of the public triggered by these events can seriously endanger social stability and the safety of the urban environment. Therefore, this study aims to explore the evolution of public panic buying behavior in complex urban systems with the intervention of multiple social actors. Based on information filtered from actual cases, this paper identifies 15 stakeholders associated with panic buying in complex urban systems. The complex urban network between the stakeholders is formalized using social network analysis (SNA). To more accurately reflect the evolutionary process of panic buying behavior, this paper proposes an agent-based model (ABM) that simulates five different behavioral states of public and the transition of states to explore the evolutionary process of panic buying behavior under other behavioral decisions of the government and the social media. The model explanation follows the ODD (Overview, Design concepts, Details) protocol. The findings suggest that, prioritizing limited government resources to enhance supply monitoring and responsive attitudes to the public can positively influence public panic buying behavior. At the same time, the social media's willingness to assume its social responsibility and improve information disclosure can further reduce the negative social impact of panic buying.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charlene完成签到,获得积分10
1秒前
Lucas应助冬灵采纳,获得10
2秒前
3秒前
虚幻的水之完成签到,获得积分10
3秒前
robin发布了新的文献求助10
4秒前
xx357951完成签到,获得积分10
4秒前
xy完成签到 ,获得积分10
6秒前
8秒前
Rita完成签到,获得积分10
9秒前
XLL小绿绿发布了新的文献求助10
9秒前
感性的神级完成签到,获得积分10
9秒前
10秒前
Amelia_Liu关注了科研通微信公众号
10秒前
12秒前
13秒前
本心完成签到,获得积分10
14秒前
SYLH应助123采纳,获得10
14秒前
15秒前
15秒前
15秒前
xx357951发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
氨基丁酸完成签到,获得积分20
18秒前
一笑奈何完成签到,获得积分10
19秒前
19秒前
19秒前
bcc完成签到,获得积分10
19秒前
上官若男应助小马爱辣条采纳,获得30
19秒前
20秒前
冬灵发布了新的文献求助10
20秒前
20秒前
科研通AI5应助氨基丁酸采纳,获得10
21秒前
zhuyang发布了新的文献求助10
22秒前
NexusExplorer应助娇气的友易采纳,获得10
22秒前
乔123发布了新的文献求助10
25秒前
关节科小大夫完成签到,获得积分20
28秒前
Lucy小影完成签到,获得积分10
29秒前
李健的粉丝团团长应助lee采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740738
求助须知:如何正确求助?哪些是违规求助? 3283592
关于积分的说明 10035967
捐赠科研通 3000373
什么是DOI,文献DOI怎么找? 1646451
邀请新用户注册赠送积分活动 783642
科研通“疑难数据库(出版商)”最低求助积分说明 750411