DP-FishNet: Dual-path Pyramid Vision Transformer-based underwater fish detection network

水下 计算机科学 人工智能 卷积神经网络 特征提取 棱锥(几何) 特征(语言学) 变压器 计算机视觉 模式识别(心理学) 数学 地质学 工程类 语言学 电压 几何学 哲学 海洋学 电气工程
作者
Yang Liu,Dong An,Yinjie Ren,Jian Zhao,Chi Zhang,Jiahui Cheng,Jincun Liu,Yaoguang Wei
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122018-122018 被引量:23
标识
DOI:10.1016/j.eswa.2023.122018
摘要

The detection of underwater fish targets is critical for ecological monitoring and marine biodiversity research. However, underwater fish detection is typically constrained by problems including low image quality and variable underwater surroundings. On behalf of further improving the underwater fish detection accuracy in complex underwater environments, this paper proposes a dual-path (DP) Pyramid Vision Transformer (PVT) feature extraction network named DP-FishNet. The backbone network DP-PVT composed from the PVT Network is made up of two feature extraction paths. The first represents the Vision Transformer path, which extracts global features to enhance the distinction between the foreground and background of underwater images. The second is the convolutional neural network path, which enhances the accuracy of detecting small targets by extracting local features. Additionally, to more effectively utilize the feature information extracted by the network, this paper provides a promising solution to employ the content-aware reassembly of features (Carafe) in the feature pyramid network (FPN). The seesaw loss is utilized as a classification loss to address the problem of unbalanced samples caused by the gap in the number of fish populations. According to the experimental findings, the AP and AP50 of the DP-FishNet are 76.0% and 95.2%, respectively. In comparison to currently available advanced two-stage detection algorithms, the quantity of computation and parameters is reduced by approximately 40%. DP-FishNet strengthens the ability to extract global and local features from underwater images and enhances feature reuse. DP-FishNet can be utilized to detect fish targets in actual and complicated underwater habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红鲤完成签到,获得积分10
刚刚
hh完成签到 ,获得积分10
1秒前
v1008完成签到,获得积分10
1秒前
lime完成签到,获得积分10
1秒前
paleo-地质完成签到,获得积分10
2秒前
冻冻妖完成签到,获得积分10
3秒前
坚强的严青完成签到,获得积分20
3秒前
Ava应助Emily采纳,获得10
4秒前
寒士完成签到,获得积分10
4秒前
小龅牙吖完成签到,获得积分10
4秒前
努力的科研小趴菜完成签到,获得积分10
4秒前
温暖的定格完成签到,获得积分10
5秒前
平平无奇种花小天才完成签到,获得积分10
6秒前
a龙完成签到,获得积分10
7秒前
ZRBY完成签到,获得积分10
9秒前
侃侃完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
ws556发布了新的文献求助10
9秒前
李_小_八完成签到,获得积分10
9秒前
10秒前
10秒前
duckspy完成签到 ,获得积分10
11秒前
三叶草完成签到,获得积分10
12秒前
大王具足虫完成签到,获得积分10
12秒前
lzl008完成签到 ,获得积分10
13秒前
我是老大应助自信的冬日采纳,获得10
13秒前
尼古拉斯大唯完成签到,获得积分10
13秒前
YANA完成签到,获得积分10
14秒前
Star完成签到,获得积分10
14秒前
14秒前
15秒前
无名发布了新的文献求助10
16秒前
pophoo完成签到,获得积分10
16秒前
yuan完成签到 ,获得积分10
16秒前
16秒前
hzhang完成签到,获得积分10
17秒前
喜洋洋完成签到,获得积分20
17秒前
LEE123完成签到,获得积分10
17秒前
piglet发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890