DP-FishNet: Dual-path Pyramid Vision Transformer-based underwater fish detection network

水下 计算机科学 人工智能 卷积神经网络 特征提取 棱锥(几何) 特征(语言学) 变压器 计算机视觉 模式识别(心理学) 数学 地质学 工程类 海洋学 电气工程 哲学 语言学 电压 几何学
作者
Yang Liu,Dong An,Yinjie Ren,Jian Zhao,Chi Zhang,Jiahui Cheng,Jincun Liu,Yaoguang Wei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122018-122018 被引量:30
标识
DOI:10.1016/j.eswa.2023.122018
摘要

The detection of underwater fish targets is critical for ecological monitoring and marine biodiversity research. However, underwater fish detection is typically constrained by problems including low image quality and variable underwater surroundings. On behalf of further improving the underwater fish detection accuracy in complex underwater environments, this paper proposes a dual-path (DP) Pyramid Vision Transformer (PVT) feature extraction network named DP-FishNet. The backbone network DP-PVT composed from the PVT Network is made up of two feature extraction paths. The first represents the Vision Transformer path, which extracts global features to enhance the distinction between the foreground and background of underwater images. The second is the convolutional neural network path, which enhances the accuracy of detecting small targets by extracting local features. Additionally, to more effectively utilize the feature information extracted by the network, this paper provides a promising solution to employ the content-aware reassembly of features (Carafe) in the feature pyramid network (FPN). The seesaw loss is utilized as a classification loss to address the problem of unbalanced samples caused by the gap in the number of fish populations. According to the experimental findings, the AP and AP50 of the DP-FishNet are 76.0% and 95.2%, respectively. In comparison to currently available advanced two-stage detection algorithms, the quantity of computation and parameters is reduced by approximately 40%. DP-FishNet strengthens the ability to extract global and local features from underwater images and enhances feature reuse. DP-FishNet can be utilized to detect fish targets in actual and complicated underwater habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁芹菜完成签到 ,获得积分10
2秒前
仁爱钢笔完成签到,获得积分10
2秒前
攀攀完成签到,获得积分10
2秒前
榆木桢楠完成签到,获得积分10
2秒前
4秒前
万能毒药完成签到 ,获得积分10
5秒前
橘子sungua完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
咕噜咕噜发布了新的文献求助10
10秒前
jie完成签到,获得积分10
11秒前
11秒前
飘逸楷瑞完成签到,获得积分10
12秒前
yimi发布了新的文献求助10
13秒前
13秒前
alan66发布了新的文献求助10
14秒前
16秒前
圈哥完成签到 ,获得积分10
16秒前
Hello应助韶华若锦采纳,获得10
16秒前
木头人完成签到,获得积分10
17秒前
黄建林发布了新的文献求助10
17秒前
彦卿完成签到 ,获得积分10
18秒前
桐桐应助哭泣的俊驰采纳,获得10
18秒前
小淘气发布了新的文献求助10
19秒前
yimi完成签到,获得积分20
20秒前
20秒前
21秒前
alan66完成签到,获得积分20
22秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
22秒前
乐乐应助文武贝采纳,获得10
22秒前
冬瓜熊发布了新的文献求助10
24秒前
Akim应助如风随水采纳,获得10
25秒前
pluto应助聂立双采纳,获得10
26秒前
小肆完成签到 ,获得积分10
27秒前
木头人发布了新的文献求助10
27秒前
28秒前
28秒前
西西完成签到,获得积分20
29秒前
大模型应助冬瓜熊采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003