DP-FishNet: Dual-path Pyramid Vision Transformer-based underwater fish detection network

水下 计算机科学 人工智能 卷积神经网络 特征提取 棱锥(几何) 特征(语言学) 变压器 计算机视觉 模式识别(心理学) 数学 地质学 工程类 海洋学 电气工程 哲学 语言学 电压 几何学
作者
Yang Liu,Dong An,Yinjie Ren,Jian Zhao,Chi Zhang,Jiahui Cheng,Jincun Liu,Yaoguang Wei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122018-122018 被引量:38
标识
DOI:10.1016/j.eswa.2023.122018
摘要

The detection of underwater fish targets is critical for ecological monitoring and marine biodiversity research. However, underwater fish detection is typically constrained by problems including low image quality and variable underwater surroundings. On behalf of further improving the underwater fish detection accuracy in complex underwater environments, this paper proposes a dual-path (DP) Pyramid Vision Transformer (PVT) feature extraction network named DP-FishNet. The backbone network DP-PVT composed from the PVT Network is made up of two feature extraction paths. The first represents the Vision Transformer path, which extracts global features to enhance the distinction between the foreground and background of underwater images. The second is the convolutional neural network path, which enhances the accuracy of detecting small targets by extracting local features. Additionally, to more effectively utilize the feature information extracted by the network, this paper provides a promising solution to employ the content-aware reassembly of features (Carafe) in the feature pyramid network (FPN). The seesaw loss is utilized as a classification loss to address the problem of unbalanced samples caused by the gap in the number of fish populations. According to the experimental findings, the AP and AP50 of the DP-FishNet are 76.0% and 95.2%, respectively. In comparison to currently available advanced two-stage detection algorithms, the quantity of computation and parameters is reduced by approximately 40%. DP-FishNet strengthens the ability to extract global and local features from underwater images and enhances feature reuse. DP-FishNet can be utilized to detect fish targets in actual and complicated underwater habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzj512682701发布了新的文献求助10
1秒前
1秒前
摩卡摩卡完成签到,获得积分10
1秒前
Zz关闭了Zz文献求助
1秒前
2秒前
西门凡双完成签到,获得积分10
2秒前
maimai完成签到,获得积分10
2秒前
shi0331完成签到,获得积分10
2秒前
yy发布了新的文献求助10
3秒前
曦语完成签到,获得积分20
3秒前
充电宝应助camell采纳,获得10
3秒前
3秒前
五十发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
铭铭铭完成签到,获得积分10
5秒前
CipherSage应助小巧灯泡采纳,获得10
5秒前
猪猪完成签到 ,获得积分10
6秒前
6秒前
虞人达完成签到,获得积分20
7秒前
lixin完成签到,获得积分10
8秒前
小陈发布了新的文献求助10
8秒前
浮游应助义气的书本采纳,获得10
8秒前
隐形曼青应助yc采纳,获得10
9秒前
Dxc发布了新的文献求助10
9秒前
FFz完成签到,获得积分10
9秒前
Druid发布了新的文献求助10
9秒前
小蘑菇应助欢呼的若烟采纳,获得20
9秒前
10秒前
jingjing发布了新的文献求助10
10秒前
斯文败类应助圆滑的铁勺采纳,获得10
11秒前
11秒前
Muncy完成签到 ,获得积分10
11秒前
yu发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
情怀应助yy采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4937256
求助须知:如何正确求助?哪些是违规求助? 4204376
关于积分的说明 13065366
捐赠科研通 3982001
什么是DOI,文献DOI怎么找? 2180433
邀请新用户注册赠送积分活动 1196350
关于科研通互助平台的介绍 1108366