MPCT: Multiscale Point Cloud Transformer With a Residual Network

计算机科学 残余物 云计算 变压器 电气工程 算法 操作系统 工程类 电压
作者
Yue Wu,Jiaming Liu,Maoguo Gong,Zhixiao Liu,Qiguang Miao,Wenping Ma
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3505-3516 被引量:3
标识
DOI:10.1109/tmm.2023.3312855
摘要

The self-attention (SA) network revisits the essence of data and has achieved remarkable results in text processing and image analysis. SA is conceptualized as a set operator that is insensitive to the order and number of data, making it suitable for point sets embedded in 3D space. However, working with point clouds still poses challenges. To tackle the issue of exponential growth in complexity and singularity induced by the original SA network without position encoding, we modify the attention mechanism by incorporating position encoding to make it linear, thus reducing its computational cost and memory usage and making it more feasible for point clouds. This article presents a new framework called multiscale point cloud transformer (MPCT), which improves upon prior methods in cross-domain applications. The utilization of multiple embeddings enables the complete capture of the remote and local contextual connections within point clouds, as determined by our proposed attention mechanism. Additionally, we use a residual network to facilitate the fusion of multiscale features, allowing MPCT to better comprehend the representations of point clouds at each stage of attention. Experiments conducted on several datasets demonstrate that MPCT outperforms the existing methods, such as achieving accuracies of 94.2% and 84.9% in classification tasks implemented on ModelNet40 and ScanObjectNN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南国发布了新的文献求助10
刚刚
haowang发布了新的文献求助10
3秒前
3秒前
沉默的千兰完成签到,获得积分10
3秒前
xcc完成签到,获得积分10
4秒前
4秒前
ding应助QDU采纳,获得10
5秒前
深情安青应助蕊蕊采纳,获得10
5秒前
Zzj完成签到,获得积分10
5秒前
6秒前
犹豫代曼完成签到,获得积分10
6秒前
Hollow完成签到,获得积分10
8秒前
zho应助风枫叶采纳,获得10
8秒前
lemon完成签到,获得积分10
9秒前
于鱼完成签到,获得积分20
9秒前
hxh完成签到,获得积分10
9秒前
曹沛岚发布了新的文献求助10
9秒前
10秒前
qy完成签到,获得积分10
10秒前
zho应助迷路的煎蛋采纳,获得10
10秒前
11秒前
11秒前
LYZSh完成签到,获得积分10
12秒前
12秒前
epmoct完成签到 ,获得积分10
12秒前
科研通AI5应助cjh采纳,获得10
13秒前
共享精神应助yuhanger采纳,获得10
13秒前
yuying完成签到 ,获得积分10
13秒前
迷人芙蓉完成签到,获得积分10
14秒前
Li完成签到,获得积分10
14秒前
gw21完成签到,获得积分10
15秒前
田様应助忧伤的丁丁采纳,获得10
15秒前
阿超发布了新的文献求助10
15秒前
iamyangjingyu完成签到,获得积分20
15秒前
eva521发布了新的文献求助10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486950
求助须知:如何正确求助?哪些是违规求助? 3075033
关于积分的说明 9139262
捐赠科研通 2767282
什么是DOI,文献DOI怎么找? 1518530
邀请新用户注册赠送积分活动 703148
科研通“疑难数据库(出版商)”最低求助积分说明 701627