HFedSNN: Efficient Hierarchical Federated Learning using Spiking Neural Networks

计算机科学 服务器 人工神经网络 能源消耗 高效能源利用 稳健性(进化) 延迟(音频) 边缘设备 单点故障 分布式计算 移动设备 尖峰神经网络 火车 人工智能 云计算 计算机网络 电信 操作系统 地理 化学 工程类 电气工程 基因 生物 地图学 生物化学 生态学
作者
Ons Aouedi,Kandaraj Piamrat,Mario Südholt
标识
DOI:10.1145/3616390.3618288
摘要

Federated Learning (FL) has emerged in edge computing to address privacy concerns in mobile networks. It allows the mobile devices to collaboratively train a model while keeping training data where they were generated. However, in practice, it suffers from several issues such as (i) robustness, due to a single point of failure, (ii) latency, as it requires a significant amount of communication resources, and (iii) convergence, due to system and statistical heterogeneity. To cope with these issues, Hierarchical FL (HFL) has been proposed as a promising alternative. HFL adds the edge servers as an intermediate layer for sub-model aggregation, several iterations will be performed before the global aggregation at the cloud server takes place, thus making the overall process more efficient, especially with non-independent and identically distributed (non-IID) data. Moreover, using traditional Artificial Neural Networks (ANNs) with HFL consumes a significant amount of energy, further hindering the application of decentralized FL on energy-constrained mobile devices. Therefore, this paper presents HFedSNN: an energy-efficient and fast-convergence model by incorporating Spike Neural Networks (SNNs) within HFL. SNN is a generation of neural networks, which promises tremendous energy and computation efficiency improvements. Taking advantage of HFL and SNN, numerical results demonstrate that HFedSNN outperforms FL with SNN (FedSNN) in terms of accuracy and communication overhead by 4.48% and 26×, respectively. Furthermore, HFedSNN significantly reduces energy consumption by 4.3× compared to FL with ANN (FedANN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ebby完成签到,获得积分10
1秒前
博大精森完成签到,获得积分10
1秒前
Accepted应助DQY采纳,获得10
2秒前
3秒前
Joyan完成签到,获得积分10
4秒前
wanna发布了新的文献求助10
4秒前
4秒前
7秒前
打工人章鱼哥完成签到,获得积分10
8秒前
8秒前
虾仁炒饭发布了新的文献求助10
9秒前
Xu发布了新的文献求助10
10秒前
顺心芷天发布了新的文献求助10
13秒前
七_发布了新的文献求助10
13秒前
14秒前
in应助呆萌蜻蜓采纳,获得10
14秒前
雅玲发布了新的文献求助20
16秒前
17秒前
pipipi完成签到,获得积分10
17秒前
Sue kong完成签到 ,获得积分10
17秒前
18秒前
18秒前
cctv18应助清爽老九采纳,获得10
18秒前
18秒前
香风智乃完成签到 ,获得积分10
19秒前
潇洒的宛菡完成签到,获得积分10
19秒前
嘎嘎发布了新的文献求助10
20秒前
20秒前
虾仁炒饭完成签到,获得积分20
20秒前
20秒前
与共完成签到 ,获得积分10
23秒前
雅玲完成签到,获得积分20
25秒前
Lucas应助潇洒的宛菡采纳,获得10
26秒前
飞鱼完成签到 ,获得积分10
28秒前
29秒前
NexusExplorer应助光亮妙之采纳,获得10
30秒前
31秒前
32秒前
AJY完成签到,获得积分10
33秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243658
求助须知:如何正确求助?哪些是违规求助? 2887537
关于积分的说明 8248871
捐赠科研通 2556242
什么是DOI,文献DOI怎么找? 1384302
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625776