HFedSNN: Efficient Hierarchical Federated Learning using Spiking Neural Networks

计算机科学 服务器 人工神经网络 能源消耗 高效能源利用 稳健性(进化) 延迟(音频) 边缘设备 单点故障 分布式计算 移动设备 尖峰神经网络 火车 人工智能 云计算 计算机网络 电信 生态学 生物化学 化学 地图学 基因 地理 电气工程 生物 工程类 操作系统
作者
Ons Aouedi,Kandaraj Piamrat,Mario Südholt
标识
DOI:10.1145/3616390.3618288
摘要

Federated Learning (FL) has emerged in edge computing to address privacy concerns in mobile networks. It allows the mobile devices to collaboratively train a model while keeping training data where they were generated. However, in practice, it suffers from several issues such as (i) robustness, due to a single point of failure, (ii) latency, as it requires a significant amount of communication resources, and (iii) convergence, due to system and statistical heterogeneity. To cope with these issues, Hierarchical FL (HFL) has been proposed as a promising alternative. HFL adds the edge servers as an intermediate layer for sub-model aggregation, several iterations will be performed before the global aggregation at the cloud server takes place, thus making the overall process more efficient, especially with non-independent and identically distributed (non-IID) data. Moreover, using traditional Artificial Neural Networks (ANNs) with HFL consumes a significant amount of energy, further hindering the application of decentralized FL on energy-constrained mobile devices. Therefore, this paper presents HFedSNN: an energy-efficient and fast-convergence model by incorporating Spike Neural Networks (SNNs) within HFL. SNN is a generation of neural networks, which promises tremendous energy and computation efficiency improvements. Taking advantage of HFL and SNN, numerical results demonstrate that HFedSNN outperforms FL with SNN (FedSNN) in terms of accuracy and communication overhead by 4.48% and 26×, respectively. Furthermore, HFedSNN significantly reduces energy consumption by 4.3× compared to FL with ANN (FedANN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助小狗同志006采纳,获得10
1秒前
123完成签到,获得积分10
1秒前
13679165979发布了新的文献求助10
2秒前
温暖的钻石完成签到,获得积分10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
3秒前
苏卿应助Eric采纳,获得10
3秒前
思源应助hhzz采纳,获得10
4秒前
红红完成签到,获得积分10
7秒前
瑶一瑶发布了新的文献求助10
7秒前
NexusExplorer应助刘鹏宇采纳,获得10
7秒前
roselau完成签到,获得积分10
7秒前
yudandan@CJLU完成签到,获得积分10
8秒前
8秒前
半山完成签到,获得积分10
12秒前
吹泡泡的红豆完成签到 ,获得积分10
13秒前
研友_89eBO8完成签到 ,获得积分10
13秒前
隐形曼青应助ZeJ采纳,获得10
13秒前
13秒前
隐形曼青应助温暖的钻石采纳,获得10
14秒前
Khr1stINK发布了新的文献求助10
15秒前
123cxj发布了新的文献求助10
16秒前
星辰大海应助红红采纳,获得10
16秒前
sweetbearm应助小周采纳,获得10
17秒前
科研通AI5应助赖道之采纳,获得10
17秒前
18秒前
HonamC完成签到,获得积分10
19秒前
十三十四十五完成签到,获得积分10
20秒前
潇洒的问夏完成签到 ,获得积分10
22秒前
无声瀑布完成签到,获得积分10
22秒前
Bingtao_Lian完成签到 ,获得积分10
23秒前
小布丁完成签到 ,获得积分10
23秒前
竹筏过海应助季生采纳,获得30
24秒前
25秒前
buno应助22采纳,获得10
26秒前
赘婿应助TT采纳,获得10
27秒前
27秒前
27秒前
28秒前
Jenny应助赖道之采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808