HFedSNN: Efficient Hierarchical Federated Learning using Spiking Neural Networks

计算机科学 服务器 人工神经网络 能源消耗 高效能源利用 稳健性(进化) 延迟(音频) 边缘设备 单点故障 分布式计算 移动设备 尖峰神经网络 火车 人工智能 云计算 计算机网络 电信 操作系统 地理 化学 工程类 电气工程 基因 生物 地图学 生物化学 生态学
作者
Ons Aouedi,Kandaraj Piamrat,Mario Südholt
标识
DOI:10.1145/3616390.3618288
摘要

Federated Learning (FL) has emerged in edge computing to address privacy concerns in mobile networks. It allows the mobile devices to collaboratively train a model while keeping training data where they were generated. However, in practice, it suffers from several issues such as (i) robustness, due to a single point of failure, (ii) latency, as it requires a significant amount of communication resources, and (iii) convergence, due to system and statistical heterogeneity. To cope with these issues, Hierarchical FL (HFL) has been proposed as a promising alternative. HFL adds the edge servers as an intermediate layer for sub-model aggregation, several iterations will be performed before the global aggregation at the cloud server takes place, thus making the overall process more efficient, especially with non-independent and identically distributed (non-IID) data. Moreover, using traditional Artificial Neural Networks (ANNs) with HFL consumes a significant amount of energy, further hindering the application of decentralized FL on energy-constrained mobile devices. Therefore, this paper presents HFedSNN: an energy-efficient and fast-convergence model by incorporating Spike Neural Networks (SNNs) within HFL. SNN is a generation of neural networks, which promises tremendous energy and computation efficiency improvements. Taking advantage of HFL and SNN, numerical results demonstrate that HFedSNN outperforms FL with SNN (FedSNN) in terms of accuracy and communication overhead by 4.48% and 26×, respectively. Furthermore, HFedSNN significantly reduces energy consumption by 4.3× compared to FL with ANN (FedANN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MM发布了新的文献求助10
刚刚
summer发布了新的文献求助20
1秒前
粥粥完成签到,获得积分10
1秒前
lisier发布了新的文献求助10
2秒前
CCC完成签到,获得积分10
2秒前
Sunny完成签到,获得积分10
2秒前
德鲁大叔完成签到,获得积分10
2秒前
小蘑菇应助诺之采纳,获得10
3秒前
一只你个灰完成签到,获得积分10
3秒前
3秒前
火山羊完成签到,获得积分10
5秒前
木木完成签到,获得积分10
5秒前
脑洞疼应助thousandlong采纳,获得10
6秒前
WenzongLai完成签到,获得积分10
6秒前
6秒前
CipherSage应助fsky采纳,获得30
6秒前
酷波er应助紫紫采纳,获得10
6秒前
Owen应助Engen采纳,获得10
7秒前
归尘应助熊熊熊采纳,获得10
7秒前
7秒前
大大怪发布了新的文献求助10
8秒前
黄家琪关注了科研通微信公众号
9秒前
核电站完成签到,获得积分10
9秒前
9秒前
xv完成签到,获得积分10
9秒前
usee完成签到,获得积分10
9秒前
TZMY完成签到,获得积分10
9秒前
10秒前
丘比特应助MM采纳,获得10
10秒前
田様应助JoshuaChen采纳,获得10
11秒前
Ttttt完成签到,获得积分10
11秒前
瘦瘦依白应助爱吃脑袋瓜采纳,获得10
11秒前
哈哈是你发布了新的文献求助10
11秒前
震震发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582