ConSpaS: a contrastive learning framework for identifying spatial domains by integrating local and global similarities

计算机科学 空间分析 相似性(几何) 人工智能 背景(考古学) 自编码 破译 数据挖掘 空间语境意识 鉴定(生物学) 图形 模式识别(心理学) 机器学习 深度学习 理论计算机科学 生物信息学 生物 数学 植物 古生物学 统计 图像(数学)
作者
Shang Wu,Yushan Qiu,Xiaoqing Cheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad395
摘要

Abstract Spatial transcriptomics is a rapidly growing field that aims to comprehensively characterize tissue organization and architecture at single-cell or sub-cellular resolution using spatial information. Such techniques provide a solid foundation for the mechanistic understanding of many biological processes in both health and disease that cannot be obtained using traditional technologies. Several methods have been proposed to decipher the spatial context of spots in tissue using spatial information. However, when spatial information and gene expression profiles are integrated, most methods only consider the local similarity of spatial information. As they do not consider the global semantic structure, spatial domain identification methods encounter poor or over-smoothed clusters. We developed ConSpaS, a novel node representation learning framework that precisely deciphers spatial domains by integrating local and global similarities based on graph autoencoder (GAE) and contrastive learning (CL). The GAE effectively integrates spatial information using local similarity and gene expression profiles, thereby ensuring that cluster assignment is spatially continuous. To improve the characterization of the global similarity of gene expression data, we adopt CL to consider the global semantic information. We propose an augmentation-free mechanism to construct global positive samples and use a semi-easy sampling strategy to define negative samples. We validated ConSpaS on multiple tissue types and technology platforms by comparing it with existing typical methods. The experimental results confirmed that ConSpaS effectively improved the identification accuracy of spatial domains with biologically meaningful spatial patterns, and denoised gene expression data while maintaining the spatial expression pattern. Furthermore, our proposed method better depicted the spatial trajectory by integrating local and global similarities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
sxm发布了新的文献求助10
1秒前
陈秋发布了新的文献求助10
4秒前
4秒前
宁静致远发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
幸福飞荷发布了新的文献求助10
8秒前
8秒前
学术版7e发布了新的文献求助10
9秒前
善学以致用应助诚心黑夜采纳,获得10
9秒前
qiuyu发布了新的文献求助10
9秒前
10秒前
怡崽完成签到,获得积分20
11秒前
光影发布了新的文献求助30
11秒前
张lf发布了新的文献求助10
11秒前
罗罗罗发布了新的文献求助10
12秒前
小泉完成签到,获得积分10
12秒前
lxl发布了新的文献求助10
12秒前
爆米花应助取名采纳,获得10
12秒前
13秒前
Cyrus完成签到 ,获得积分10
13秒前
13秒前
Hello应助桂先生采纳,获得10
14秒前
changping应助小四喜采纳,获得10
14秒前
14秒前
清脆飞机发布了新的文献求助10
14秒前
111完成签到 ,获得积分10
14秒前
田様应助科研通管家采纳,获得30
15秒前
今后应助科研通管家采纳,获得10
15秒前
孤独的涔完成签到,获得积分10
15秒前
昏睡的蟠桃应助科研通管家采纳,获得150
15秒前
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
pcr163应助科研通管家采纳,获得150
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062030
求助须知:如何正确求助?哪些是违规求助? 4285935
关于积分的说明 13355964
捐赠科研通 4103820
什么是DOI,文献DOI怎么找? 2246990
邀请新用户注册赠送积分活动 1252642
关于科研通互助平台的介绍 1183592