清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
hhuajw应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
甜美又琴发布了新的文献求助10
8秒前
今后应助高高元柏采纳,获得10
10秒前
25秒前
甜美又琴完成签到,获得积分10
27秒前
SciGPT应助tq采纳,获得10
28秒前
31秒前
Puan完成签到,获得积分10
1分钟前
1分钟前
Hazel发布了新的文献求助10
1分钟前
wangsai0532完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
hhuajw应助科研通管家采纳,获得10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
orixero应助龚广山采纳,获得10
2分钟前
2分钟前
涛1完成签到 ,获得积分10
2分钟前
2分钟前
Hazel完成签到,获得积分20
2分钟前
龚广山发布了新的文献求助10
2分钟前
老实的从菡应助Hazel采纳,获得30
3分钟前
gao0505完成签到,获得积分10
3分钟前
1437594843完成签到 ,获得积分10
3分钟前
sf完成签到 ,获得积分10
3分钟前
萝卜猪完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
绿鬼蓝完成签到 ,获得积分10
4分钟前
ajing完成签到,获得积分10
4分钟前
上官若男应助优美香露采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706593
求助须知:如何正确求助?哪些是违规求助? 5175383
关于积分的说明 15247065
捐赠科研通 4860032
什么是DOI,文献DOI怎么找? 2608323
邀请新用户注册赠送积分活动 1559256
关于科研通互助平台的介绍 1517033