Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
西瓜刀发布了新的文献求助10
3秒前
5秒前
5秒前
Crane发布了新的文献求助10
5秒前
5秒前
蓝天应助谨慎觅露采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
bkagyin应助小豆子采纳,获得10
8秒前
9秒前
9秒前
高兴的小完成签到,获得积分10
10秒前
Luna_aaa应助小鱼头采纳,获得10
10秒前
光之战士完成签到 ,获得积分10
10秒前
theThreeMagi发布了新的文献求助10
11秒前
ding应助研友_5Zl9D8采纳,获得10
11秒前
JamesPei应助再学一分钟采纳,获得10
12秒前
12秒前
13秒前
elisa828发布了新的文献求助10
13秒前
ap2010发布了新的文献求助30
13秒前
星辰大海应助kunli采纳,获得10
14秒前
CT666发布了新的文献求助10
15秒前
痴痴的噜完成签到,获得积分10
15秒前
16秒前
16秒前
所所应助perdgs采纳,获得10
18秒前
隐形曼青应助默默的恶天采纳,获得10
18秒前
infinite完成签到,获得积分10
18秒前
邢哥哥完成签到,获得积分10
19秒前
20秒前
aaaa发布了新的文献求助10
21秒前
ccm应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690