亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助jane123采纳,获得30
1秒前
xiaoguoxiaoguo完成签到,获得积分10
2秒前
3秒前
2jz发布了新的文献求助10
4秒前
5秒前
斯文钢笔完成签到 ,获得积分10
9秒前
Zhang发布了新的文献求助10
10秒前
Terry完成签到,获得积分10
12秒前
yuan发布了新的文献求助10
13秒前
16秒前
lmj完成签到,获得积分10
16秒前
LSY28发布了新的文献求助10
22秒前
打打应助Zhang采纳,获得10
31秒前
科研通AI6.1应助123采纳,获得10
32秒前
科研通AI6.1应助LucyMartinez采纳,获得10
40秒前
华仔应助2jz采纳,获得10
42秒前
45秒前
Akim应助LSY28采纳,获得10
55秒前
小蘑菇应助应三问采纳,获得10
56秒前
57秒前
59秒前
Orange应助lin采纳,获得50
1分钟前
大川页完成签到,获得积分10
1分钟前
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
应三问发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
迅速初柳发布了新的文献求助10
1分钟前
Alberat发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎应助迅速初柳采纳,获得10
1分钟前
1分钟前
悦耳青梦发布了新的文献求助10
1分钟前
卷毛维安完成签到 ,获得积分10
1分钟前
迷路的沛芹完成签到 ,获得积分0
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746460
求助须知:如何正确求助?哪些是违规求助? 5434797
关于积分的说明 15355420
捐赠科研通 4886401
什么是DOI,文献DOI怎么找? 2627238
邀请新用户注册赠送积分活动 1575707
关于科研通互助平台的介绍 1532471