清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助典雅的荣轩采纳,获得10
1秒前
知行者完成签到 ,获得积分10
3秒前
小鱼女侠完成签到 ,获得积分10
13秒前
房天川完成签到 ,获得积分10
13秒前
水天一色发布了新的文献求助10
22秒前
jerry完成签到 ,获得积分10
26秒前
啾一口香菜完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
46秒前
胡可完成签到 ,获得积分10
52秒前
沙海沉戈完成签到,获得积分0
1分钟前
无悔完成签到 ,获得积分10
1分钟前
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
zzzzz发布了新的文献求助10
1分钟前
烟雨江南完成签到,获得积分10
1分钟前
wyh295352318完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zzzzz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
刘刘完成签到 ,获得积分10
3分钟前
hyxu678完成签到,获得积分10
3分钟前
雷小牛完成签到 ,获得积分10
3分钟前
小蝴蝶完成签到,获得积分20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小蝴蝶发布了新的文献求助10
3分钟前
Binggo完成签到,获得积分10
3分钟前
4分钟前
4分钟前
搞怪莫茗发布了新的文献求助10
4分钟前
Lillianzhu1完成签到,获得积分10
4分钟前
4分钟前
淡定的幻枫完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
yao完成签到 ,获得积分10
5分钟前
幸福的鑫鹏完成签到 ,获得积分10
5分钟前
5分钟前
搞怪莫茗完成签到,获得积分10
5分钟前
典雅的荣轩完成签到,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983