已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
欣欣发布了新的文献求助20
2秒前
3秒前
3秒前
wang发布了新的文献求助10
4秒前
Rachel发布了新的文献求助10
4秒前
5秒前
wdw2501发布了新的文献求助10
5秒前
Ava应助LYQ采纳,获得10
5秒前
7秒前
不能随便发布了新的文献求助20
8秒前
Ww发布了新的文献求助10
8秒前
活力的采枫完成签到 ,获得积分10
9秒前
留胡子的裘完成签到 ,获得积分10
9秒前
10秒前
奥利奥完成签到 ,获得积分10
11秒前
忧虑的大米完成签到 ,获得积分10
11秒前
HMG1COA完成签到 ,获得积分10
12秒前
zenmefeishi完成签到 ,获得积分10
12秒前
JamesPei应助油料种子采纳,获得10
12秒前
爱听歌的悒完成签到 ,获得积分10
12秒前
梦想里发布了新的文献求助10
12秒前
我不ins你_完成签到 ,获得积分10
13秒前
薛西弗斯发布了新的文献求助10
13秒前
紫霃完成签到,获得积分20
14秒前
14秒前
wang完成签到,获得积分10
15秒前
li完成签到 ,获得积分10
15秒前
16秒前
18秒前
小李新人完成签到 ,获得积分0
18秒前
奶奶的龙发布了新的文献求助10
20秒前
美味牛肝菌完成签到 ,获得积分10
20秒前
简晴发布了新的文献求助10
20秒前
香蕉觅云应助梦想里采纳,获得10
21秒前
LYQ发布了新的文献求助10
22秒前
Edwyna完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747