Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wave完成签到,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
sjll完成签到,获得积分10
2秒前
浮游应助勤恳的一斩采纳,获得10
2秒前
李李完成签到,获得积分10
3秒前
留白完成签到,获得积分10
4秒前
大个应助凯圣王采纳,获得10
4秒前
禾之发布了新的文献求助10
4秒前
5秒前
刘秀发完成签到,获得积分10
5秒前
江峰完成签到,获得积分10
5秒前
5秒前
5秒前
李健的小迷弟应助LY采纳,获得10
6秒前
XinSha发布了新的文献求助30
7秒前
7秒前
Kylie完成签到,获得积分10
7秒前
Liens完成签到,获得积分10
7秒前
9秒前
烟雨平生发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
Liens发布了新的文献求助10
11秒前
11秒前
宁异勿同发布了新的文献求助10
12秒前
zzw发布了新的文献求助30
12秒前
xwxhbydmet发布了新的文献求助10
13秒前
零一秒发布了新的文献求助10
13秒前
叫我天秀标哥完成签到,获得积分10
13秒前
白河夜船关注了科研通微信公众号
13秒前
14秒前
猪猪侠完成签到,获得积分10
14秒前
茶冻芭乐发布了新的文献求助10
15秒前
15秒前
西果然发布了新的文献求助10
15秒前
Kylie发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483