Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heizbimawan发布了新的文献求助10
刚刚
yaya发布了新的文献求助10
1秒前
1秒前
在水一方应助花花采纳,获得10
1秒前
1秒前
正爱霜发布了新的文献求助10
2秒前
今后应助唐糖采纳,获得10
2秒前
小虎完成签到,获得积分10
3秒前
从容芸完成签到,获得积分10
3秒前
3秒前
达布溜完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Hello应助徐佳乐采纳,获得10
4秒前
5秒前
小二郎应助安小安采纳,获得10
5秒前
princecoof发布了新的文献求助10
5秒前
8R60d8应助candyTT采纳,获得10
5秒前
CL完成签到,获得积分10
5秒前
5秒前
6秒前
fff发布了新的文献求助30
7秒前
魔幻冰棍发布了新的文献求助10
7秒前
7秒前
666eeerrr完成签到 ,获得积分10
7秒前
FashionBoy应助yaya采纳,获得10
8秒前
九闫祝发布了新的文献求助10
8秒前
Ly完成签到,获得积分10
8秒前
quhayley发布了新的文献求助10
8秒前
毕业大吉发布了新的文献求助20
8秒前
hll发布了新的文献求助10
8秒前
Hello应助RC_Wang采纳,获得10
9秒前
丘比特应助rlh采纳,获得10
9秒前
时尚的靖发布了新的文献求助10
10秒前
10秒前
兔子发布了新的文献求助10
10秒前
weizhao发布了新的文献求助10
10秒前
Lucas应助农瑞金采纳,获得10
11秒前
chris chen发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454