亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bioinformatics‐based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics

肿瘤科 免疫疗法 生物 癌症 免疫系统 生存分析 子群分析 比例危险模型 内科学 生物信息学 癌症研究 医学 免疫学 荟萃分析
作者
Lv Huang,Wei Xiong,Ling Cheng,Haoguang Li
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:16
标识
DOI:10.1002/jgm.3590
摘要

Abstract Background Gastric cancer (GC) represents a major global health burden as a result of its high incidence and poor prognosis. The present study examined the role of the programmed cell death (PCD) pathway and identified key genes influencing the prognosis of patients with GC. Methods Bioinformatics analysis, machine learning techniques and survival analysis were systematically integrated to identify core prognostic genes from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA‐STAD) dataset. A prognostic model was then developed to stratify patients into high‐risk and low‐risk groups, and further validated in the GSE84437 dataset. The model also demonstrated clinical relevance with tumor staging and histopathology. Immune infiltration analysis and the potential benefits of immunotherapy for each risk group were assessed. Finally, subgroup analysis was performed based on the expression of three key prognostic genes. Results Three core prognostic genes (CAV1, MMP9 and MAGEA3) were identified. The prognostic model could effectively differentiate patients into high‐risk and low‐risk groups, leading to significantly distinct survival outcomes. Increased immune cell infiltration was observed in the high‐risk group, and better potential for immunotherapy outcomes was observed in the low‐risk group. Pathways related to cancer progression, such as epithelial–mesenchymal transition and tumor necrosis factor‐α signaling via nuclear factor‐kappa B, were enriched in the high‐risk group. By contrast, the low‐risk group showed a number of pathways associated with maintenance of cell functionality and immune responses. The two groups differed in gene mutation patterns and drug sensitivities. Subgroup analysis based on the expression of the three key genes revealed two distinct clusters with distinct survival outcomes, tumor immune microenvironment characteristics and pathway enrichment. Conclusions The present study offers novel insights into the significance of PCD pathways and identifies key genes associated with the prognosis of patients with GC. This robust prognostic model, along with the delineation of distinct risk groups and molecular subtypes, provides valuable tools for risk stratification, treatment selection and personalized therapeutic interventions for GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
Timelapse发布了新的文献求助10
31秒前
从容芮完成签到,获得积分0
37秒前
38秒前
yuaner发布了新的文献求助10
45秒前
45秒前
gszy1975完成签到,获得积分10
46秒前
drfwjuikesv完成签到,获得积分10
48秒前
哈哈发布了新的文献求助10
52秒前
Panther完成签到,获得积分10
59秒前
Akim应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
0m0完成签到 ,获得积分10
1分钟前
Akim应助momo采纳,获得10
1分钟前
Cu完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
momo发布了新的文献求助10
2分钟前
友好灵阳完成签到 ,获得积分10
2分钟前
2分钟前
大熊完成签到 ,获得积分10
2分钟前
obedVL完成签到,获得积分10
2分钟前
学术交流高完成签到 ,获得积分10
2分钟前
林好人完成签到 ,获得积分10
2分钟前
BowieHuang应助温暖采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
BowieHuang应助齐家腾采纳,获得30
3分钟前
大模型应助研友_LOrqv8采纳,获得30
3分钟前
4分钟前
顺利的边牧完成签到 ,获得积分10
4分钟前
Krim完成签到 ,获得积分0
4分钟前
无极微光应助机智的白凝采纳,获得20
4分钟前
咋咋呼呼小万恶关注了科研通微信公众号
4分钟前
文承杰完成签到 ,获得积分10
4分钟前
4分钟前
玫瑰遇上奶油完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772706
求助须知:如何正确求助?哪些是违规求助? 5601496
关于积分的说明 15429978
捐赠科研通 4905611
什么是DOI,文献DOI怎么找? 2639527
邀请新用户注册赠送积分活动 1587407
关于科研通互助平台的介绍 1542369