A semiparametric promotion time cure model with support vector machine

支持向量机 协变量 计算机科学 机器学习 人工智能 广义线性模型 逻辑回归 数据挖掘
作者
Suvra Pal,Wisdom Aselisewine
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (3) 被引量:7
标识
DOI:10.1214/23-aoas1741
摘要

The promotion time cure rate model (PCM) is an extensively studied model for the analysis of time-to-event data in the presence of a cured subgroup. There are several strategies proposed in the literature to model the latency part of PCM. However, there aren't many strategies proposed to investigate the effects of covariates on the incidence part of PCM. In this regard most existing studies assume the boundary separating the cured and noncured subjects with respect to the covariates to be linear. As such, they can only capture simple effects of the covariates on the cured/noncured probability. In this manuscript we propose a new promotion time cure model that uses the support vector machine (SVM) to model the incidence part. The proposed model inherits the features of the SVM and provides flexibility in capturing nonlinearity in the data. To the best of our knowledge, this is the first work that integrates the SVM with PCM model. For the estimation of model parameters, we develop an expectation maximization algorithm where we make use of the sequential minimal optimization technique together with the Platt scaling method to obtain the posterior probabilities of cured/uncured. A detailed simulation study shows that the proposed model outperforms the existing logistic regression-based PCM model as well as the spline regression-based PCM model, which is also known to capture nonlinearity in the data. This is true in terms of bias and mean square error of different quantities of interest and also in terms of predictive and classification accuracies of cure. Finally, we illustrate the applicability and superiority of our model using the data from a study on leukemia patients who went through bone marrow transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
810给810的求助进行了留言
2秒前
莫挽发布了新的文献求助10
2秒前
泥嚎发布了新的文献求助10
2秒前
寒染雾发布了新的文献求助10
3秒前
研友_VZG7GZ应助小王小王采纳,获得10
3秒前
爱听歌问寒完成签到,获得积分20
4秒前
4秒前
张雯思发布了新的文献求助30
7秒前
顾矜应助张柔采纳,获得10
8秒前
feng完成签到,获得积分10
8秒前
1234完成签到 ,获得积分10
13秒前
14秒前
奥特超曼应助王半书采纳,获得10
14秒前
15秒前
俏皮马里奥完成签到 ,获得积分10
16秒前
Lucas应助Xylah_Rebecca采纳,获得30
16秒前
舒心的语芙关注了科研通微信公众号
16秒前
小尹完成签到 ,获得积分10
16秒前
小王小王完成签到 ,获得积分10
18秒前
diu发布了新的文献求助30
20秒前
王者归来完成签到,获得积分10
21秒前
22秒前
23秒前
CodeCraft应助LuoYixiang采纳,获得10
26秒前
传奇3应助Vicky采纳,获得10
27秒前
29秒前
儒雅致远发布了新的文献求助10
30秒前
不喜发布了新的文献求助10
32秒前
33秒前
孙燕应助七曜采纳,获得10
34秒前
脑洞疼应助草上飞采纳,获得10
35秒前
35秒前
寻梦完成签到,获得积分10
36秒前
Vicky完成签到,获得积分10
38秒前
谷得猫宁完成签到,获得积分20
38秒前
orixero应助儒雅致远采纳,获得10
41秒前
Vicky发布了新的文献求助10
41秒前
1351567822应助传统的迎南采纳,获得10
42秒前
充电宝应助一颗椰子糖耶采纳,获得10
42秒前
丘比特应助ultramix采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176