A semiparametric promotion time cure model with support vector machine

支持向量机 协变量 计算机科学 机器学习 人工智能 广义线性模型 逻辑回归 数据挖掘
作者
Suvra Pal,Wisdom Aselisewine
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (3) 被引量:7
标识
DOI:10.1214/23-aoas1741
摘要

The promotion time cure rate model (PCM) is an extensively studied model for the analysis of time-to-event data in the presence of a cured subgroup. There are several strategies proposed in the literature to model the latency part of PCM. However, there aren't many strategies proposed to investigate the effects of covariates on the incidence part of PCM. In this regard most existing studies assume the boundary separating the cured and noncured subjects with respect to the covariates to be linear. As such, they can only capture simple effects of the covariates on the cured/noncured probability. In this manuscript we propose a new promotion time cure model that uses the support vector machine (SVM) to model the incidence part. The proposed model inherits the features of the SVM and provides flexibility in capturing nonlinearity in the data. To the best of our knowledge, this is the first work that integrates the SVM with PCM model. For the estimation of model parameters, we develop an expectation maximization algorithm where we make use of the sequential minimal optimization technique together with the Platt scaling method to obtain the posterior probabilities of cured/uncured. A detailed simulation study shows that the proposed model outperforms the existing logistic regression-based PCM model as well as the spline regression-based PCM model, which is also known to capture nonlinearity in the data. This is true in terms of bias and mean square error of different quantities of interest and also in terms of predictive and classification accuracies of cure. Finally, we illustrate the applicability and superiority of our model using the data from a study on leukemia patients who went through bone marrow transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助xxy采纳,获得10
2秒前
starofjlu应助缓慢的断秋采纳,获得20
2秒前
叮当应助Yynlty采纳,获得10
3秒前
修仙应助源老头采纳,获得10
4秒前
cedricleonard发布了新的文献求助10
4秒前
赘婿应助神途采纳,获得10
4秒前
MikL完成签到,获得积分10
4秒前
佩吉的布丁完成签到 ,获得积分10
4秒前
爱吃麻辣烫应助晊恦采纳,获得10
5秒前
Jiang完成签到 ,获得积分10
5秒前
tangzelun完成签到,获得积分10
6秒前
6秒前
纯真紫南完成签到,获得积分20
9秒前
大有阳光应助幽默的尔冬采纳,获得10
10秒前
11秒前
Lucas应助红泥小火炉采纳,获得10
12秒前
12秒前
脑洞疼应助林林采纳,获得10
12秒前
纯真紫南发布了新的文献求助10
14秒前
tjusasa完成签到,获得积分10
15秒前
16秒前
神途发布了新的文献求助10
17秒前
17秒前
19秒前
upupup111发布了新的文献求助10
19秒前
21秒前
111发布了新的文献求助10
21秒前
瞬华完成签到,获得积分10
22秒前
羊青丝发布了新的文献求助10
22秒前
郝雁山完成签到,获得积分10
23秒前
科目三应助伯赏芷烟采纳,获得10
23秒前
小马甲应助guangyu采纳,获得10
23秒前
23秒前
26秒前
26秒前
科研达人发布了新的文献求助10
26秒前
成就的绮南完成签到 ,获得积分10
27秒前
lou发布了新的文献求助10
27秒前
调皮烧鹅完成签到,获得积分20
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149396
求助须知:如何正确求助?哪些是违规求助? 2800463
关于积分的说明 7840190
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308223
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706