A semiparametric promotion time cure model with support vector machine

支持向量机 协变量 计算机科学 机器学习 人工智能 广义线性模型 逻辑回归 数据挖掘
作者
Suvra Pal,Wisdom Aselisewine
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (3) 被引量:7
标识
DOI:10.1214/23-aoas1741
摘要

The promotion time cure rate model (PCM) is an extensively studied model for the analysis of time-to-event data in the presence of a cured subgroup. There are several strategies proposed in the literature to model the latency part of PCM. However, there aren't many strategies proposed to investigate the effects of covariates on the incidence part of PCM. In this regard most existing studies assume the boundary separating the cured and noncured subjects with respect to the covariates to be linear. As such, they can only capture simple effects of the covariates on the cured/noncured probability. In this manuscript we propose a new promotion time cure model that uses the support vector machine (SVM) to model the incidence part. The proposed model inherits the features of the SVM and provides flexibility in capturing nonlinearity in the data. To the best of our knowledge, this is the first work that integrates the SVM with PCM model. For the estimation of model parameters, we develop an expectation maximization algorithm where we make use of the sequential minimal optimization technique together with the Platt scaling method to obtain the posterior probabilities of cured/uncured. A detailed simulation study shows that the proposed model outperforms the existing logistic regression-based PCM model as well as the spline regression-based PCM model, which is also known to capture nonlinearity in the data. This is true in terms of bias and mean square error of different quantities of interest and also in terms of predictive and classification accuracies of cure. Finally, we illustrate the applicability and superiority of our model using the data from a study on leukemia patients who went through bone marrow transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
maggie完成签到,获得积分10
1秒前
diraczh完成签到,获得积分10
2秒前
2秒前
Wxy发布了新的文献求助30
3秒前
3秒前
Lynn完成签到,获得积分10
4秒前
5秒前
冷淡芝麻发布了新的文献求助20
7秒前
1111222发布了新的文献求助10
8秒前
情怀应助eghiefefe采纳,获得30
9秒前
好蓝发布了新的文献求助10
10秒前
打打应助乔治采纳,获得10
10秒前
11秒前
凉秋气爽完成签到,获得积分10
11秒前
李健应助yzzzz采纳,获得10
12秒前
帅男完成签到,获得积分10
12秒前
小二郎应助yanchen219采纳,获得10
13秒前
芜衡落砂完成签到,获得积分10
13秒前
陈陈陈陈陈完成签到,获得积分10
13秒前
可爱的函函应助谨慎采白采纳,获得10
14秒前
情怀应助una采纳,获得10
14秒前
15秒前
wrl2023完成签到,获得积分10
15秒前
科研通AI6应助枫丶采纳,获得10
17秒前
星辰发布了新的文献求助10
17秒前
bkagyin应助称心寒松采纳,获得10
17秒前
飞白发布了新的文献求助10
18秒前
19秒前
冷淡芝麻完成签到,获得积分10
20秒前
1111222完成签到,获得积分10
20秒前
丘比特应助孤独秋白采纳,获得10
20秒前
Jasper应助乔治采纳,获得10
21秒前
21秒前
合适的猎豹完成签到,获得积分10
23秒前
漂亮元蝶发布了新的文献求助10
23秒前
bkagyin应助xh采纳,获得10
24秒前
huanhai发布了新的文献求助10
24秒前
24秒前
张一鸣完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351