A semiparametric promotion time cure model with support vector machine

支持向量机 协变量 计算机科学 机器学习 人工智能 广义线性模型 逻辑回归 数据挖掘
作者
Suvra Pal,Wisdom Aselisewine
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (3) 被引量:7
标识
DOI:10.1214/23-aoas1741
摘要

The promotion time cure rate model (PCM) is an extensively studied model for the analysis of time-to-event data in the presence of a cured subgroup. There are several strategies proposed in the literature to model the latency part of PCM. However, there aren't many strategies proposed to investigate the effects of covariates on the incidence part of PCM. In this regard most existing studies assume the boundary separating the cured and noncured subjects with respect to the covariates to be linear. As such, they can only capture simple effects of the covariates on the cured/noncured probability. In this manuscript we propose a new promotion time cure model that uses the support vector machine (SVM) to model the incidence part. The proposed model inherits the features of the SVM and provides flexibility in capturing nonlinearity in the data. To the best of our knowledge, this is the first work that integrates the SVM with PCM model. For the estimation of model parameters, we develop an expectation maximization algorithm where we make use of the sequential minimal optimization technique together with the Platt scaling method to obtain the posterior probabilities of cured/uncured. A detailed simulation study shows that the proposed model outperforms the existing logistic regression-based PCM model as well as the spline regression-based PCM model, which is also known to capture nonlinearity in the data. This is true in terms of bias and mean square error of different quantities of interest and also in terms of predictive and classification accuracies of cure. Finally, we illustrate the applicability and superiority of our model using the data from a study on leukemia patients who went through bone marrow transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐银耳汤应助FFF采纳,获得10
刚刚
shelly0621完成签到,获得积分10
刚刚
科研通AI5应助FFF采纳,获得10
刚刚
yyang完成签到,获得积分10
刚刚
穆思柔完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
脑洞疼应助Xu采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
Dddd发布了新的文献求助10
3秒前
xx完成签到,获得积分20
3秒前
BEIBEI完成签到,获得积分10
3秒前
liyi发布了新的文献求助10
3秒前
苗条的山晴完成签到,获得积分10
3秒前
4秒前
mm完成签到,获得积分10
5秒前
JUll发布了新的文献求助10
5秒前
无奈抽屉完成签到 ,获得积分10
5秒前
5秒前
6秒前
风中的夏兰完成签到,获得积分10
6秒前
czt完成签到,获得积分10
6秒前
研友_nPPERn发布了新的文献求助10
6秒前
7秒前
温柔若发布了新的文献求助10
7秒前
ry发布了新的文献求助10
7秒前
gms发布了新的文献求助10
7秒前
Owen应助judy采纳,获得30
7秒前
Zifflie完成签到,获得积分10
7秒前
8秒前
8秒前
xuanxuan发布了新的文献求助10
8秒前
keigo发布了新的文献求助10
8秒前
xqwwqx发布了新的文献求助10
8秒前
fay完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678