A semiparametric promotion time cure model with support vector machine

支持向量机 协变量 计算机科学 机器学习 人工智能 广义线性模型 逻辑回归 数据挖掘
作者
Suvra Pal,Wisdom Aselisewine
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (3) 被引量:7
标识
DOI:10.1214/23-aoas1741
摘要

The promotion time cure rate model (PCM) is an extensively studied model for the analysis of time-to-event data in the presence of a cured subgroup. There are several strategies proposed in the literature to model the latency part of PCM. However, there aren't many strategies proposed to investigate the effects of covariates on the incidence part of PCM. In this regard most existing studies assume the boundary separating the cured and noncured subjects with respect to the covariates to be linear. As such, they can only capture simple effects of the covariates on the cured/noncured probability. In this manuscript we propose a new promotion time cure model that uses the support vector machine (SVM) to model the incidence part. The proposed model inherits the features of the SVM and provides flexibility in capturing nonlinearity in the data. To the best of our knowledge, this is the first work that integrates the SVM with PCM model. For the estimation of model parameters, we develop an expectation maximization algorithm where we make use of the sequential minimal optimization technique together with the Platt scaling method to obtain the posterior probabilities of cured/uncured. A detailed simulation study shows that the proposed model outperforms the existing logistic regression-based PCM model as well as the spline regression-based PCM model, which is also known to capture nonlinearity in the data. This is true in terms of bias and mean square error of different quantities of interest and also in terms of predictive and classification accuracies of cure. Finally, we illustrate the applicability and superiority of our model using the data from a study on leukemia patients who went through bone marrow transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一汪完成签到,获得积分10
刚刚
2秒前
我想静静完成签到 ,获得积分10
3秒前
smujj完成签到,获得积分10
4秒前
JHL发布了新的文献求助10
4秒前
胡豆豆发布了新的文献求助10
5秒前
5秒前
wwj1009完成签到 ,获得积分10
5秒前
son发布了新的文献求助10
6秒前
Criminology34应助Crab采纳,获得10
8秒前
8秒前
大模型应助归雁采纳,获得10
9秒前
Fi9zero发布了新的文献求助30
10秒前
10秒前
香蕉觅云应助han123123采纳,获得10
11秒前
莫西莫西发布了新的文献求助10
11秒前
嗯嗯发布了新的文献求助10
12秒前
peekaboo完成签到,获得积分10
13秒前
14秒前
郑传伟发布了新的文献求助10
16秒前
16秒前
17秒前
故酒应助嗯嗯采纳,获得10
19秒前
爆米花应助Catalysis123采纳,获得10
20秒前
赘婿应助忧郁的砖家采纳,获得10
21秒前
jiuwu完成签到,获得积分10
21秒前
橘子29发布了新的文献求助10
22秒前
22秒前
teamguichu完成签到 ,获得积分10
23秒前
25秒前
小蘑菇应助一一采纳,获得10
26秒前
26秒前
香蕉书兰完成签到,获得积分20
27秒前
哈哈哈完成签到,获得积分20
27秒前
陶佳仪发布了新的文献求助10
28秒前
hsj完成签到,获得积分10
28秒前
Jiang发布了新的文献求助10
29秒前
HMLM完成签到,获得积分10
30秒前
传奇3应助胡豆豆采纳,获得10
31秒前
子舆完成签到 ,获得积分10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564