已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A semiparametric promotion time cure model with support vector machine

支持向量机 协变量 计算机科学 机器学习 人工智能 广义线性模型 逻辑回归 数据挖掘
作者
Suvra Pal,Wisdom Aselisewine
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (3) 被引量:7
标识
DOI:10.1214/23-aoas1741
摘要

The promotion time cure rate model (PCM) is an extensively studied model for the analysis of time-to-event data in the presence of a cured subgroup. There are several strategies proposed in the literature to model the latency part of PCM. However, there aren't many strategies proposed to investigate the effects of covariates on the incidence part of PCM. In this regard most existing studies assume the boundary separating the cured and noncured subjects with respect to the covariates to be linear. As such, they can only capture simple effects of the covariates on the cured/noncured probability. In this manuscript we propose a new promotion time cure model that uses the support vector machine (SVM) to model the incidence part. The proposed model inherits the features of the SVM and provides flexibility in capturing nonlinearity in the data. To the best of our knowledge, this is the first work that integrates the SVM with PCM model. For the estimation of model parameters, we develop an expectation maximization algorithm where we make use of the sequential minimal optimization technique together with the Platt scaling method to obtain the posterior probabilities of cured/uncured. A detailed simulation study shows that the proposed model outperforms the existing logistic regression-based PCM model as well as the spline regression-based PCM model, which is also known to capture nonlinearity in the data. This is true in terms of bias and mean square error of different quantities of interest and also in terms of predictive and classification accuracies of cure. Finally, we illustrate the applicability and superiority of our model using the data from a study on leukemia patients who went through bone marrow transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不可以哦完成签到 ,获得积分10
刚刚
1秒前
rick3455完成签到 ,获得积分10
2秒前
开放的亦竹完成签到,获得积分10
2秒前
执念完成签到 ,获得积分10
3秒前
4秒前
耶耶完成签到,获得积分20
5秒前
Doctor完成签到 ,获得积分10
5秒前
拼搏的寒凝完成签到 ,获得积分10
6秒前
大学生完成签到 ,获得积分10
6秒前
林林发布了新的文献求助10
7秒前
Only1完成签到,获得积分10
8秒前
轻松笙完成签到,获得积分10
9秒前
小张同学完成签到 ,获得积分10
12秒前
DChen完成签到 ,获得积分10
13秒前
嘟嘟雯完成签到 ,获得积分10
14秒前
14秒前
情怀应助琬碗采纳,获得30
15秒前
Liangyong_Fu完成签到 ,获得积分10
15秒前
16秒前
Only1发布了新的文献求助10
16秒前
昵称完成签到,获得积分10
16秒前
16秒前
土豆你个西红柿完成签到 ,获得积分10
17秒前
小丸子完成签到,获得积分10
18秒前
Dlan完成签到,获得积分10
18秒前
Aliya完成签到 ,获得积分10
18秒前
dadabad完成签到 ,获得积分10
19秒前
xixiYa_发布了新的文献求助10
20秒前
小蘑菇应助小肥采纳,获得10
20秒前
jjj完成签到 ,获得积分10
21秒前
在水一方应助xuyidan采纳,获得10
21秒前
张zz完成签到 ,获得积分10
21秒前
dly完成签到 ,获得积分10
21秒前
坚强的缘分完成签到,获得积分10
22秒前
Criminology34应助chd采纳,获得10
22秒前
山东老铁完成签到 ,获得积分10
23秒前
沉梦昂志_hzy完成签到,获得积分0
24秒前
26秒前
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386