淋病奈瑟菌
头孢曲松
基因
转化(遗传学)
生物
微生物学
最小抑制浓度
核酸
突变
分子生物学
遗传学
抗生素
作者
Lin Zhu,Jingyao Liang,Yue Zheng,Shao-Chun Chen,Qingfang Xu,Shutao Yin,Yiyong Hong,Wenling Cao,Lai Wei,Zijian Gong
标识
DOI:10.1016/j.jgar.2023.08.005
摘要
To investigate the gene mutations associated with ceftriaxone (CRO) resistance among gonococcal isolates, and to determine the effects of the mutated genes on CRO minimum inhibitory concentrations (MICs) with transformation assays and antisense peptide nucleic acids (asPNAs).Ceftriaxone-resistant (CROR) and ceftriaxone-susceptible (CROS) isolates were identified using EUCAST and paired according to similarity in their MICs to other antimicrobials. The two groups of gonococci were sequenced and analysed. Mutated genes that showed a statistical difference between the two groups were transformed into gonococcal reference strains to determine their functions. AsPNAs were designed and transformed into the former transformant to further confirm the effects of the mutated genes.Twenty-two paired CROR and CROS isolates were obtained. The incidence of the penA-A501T and penA-G542S mutations individually, as well as combined mutations (penA-A501T and ftsX-R251H, penA-G542S and ftsX R251H), was statistically different between the two groups. The MIC of ATCC43069 (A43) increased 2 times following transformation with penA-A501T, and the MICs of A43 and ATCC49226 (A49) increased 32 times and 2 times following transformation with penA-A501T and ftsX-R251H, respectively. Antisense PNA-P3 reduced the MIC of the A43 transformant most significantly when transformed individually. PNA-P3 and PNA-F1 (asPNAs of the penA and ftsX) restored CRO susceptibility.PenA-A501T and penA-G542S mutations are important in CRO resistance among gonococci isolates. The ftsX-R251H mutation is also related to CRO resistance, and combined mutations of ftsX-R251H and penA-A501T comediate a significant reduction in CRO susceptibility. The combined application of PNA-P3 and PNA-F1 could effectively reverse the resistance to CRO in N. gonorrhoeae.
科研通智能强力驱动
Strongly Powered by AbleSci AI