MalAder: Decision-Based Black-Box Attack Against API Sequence Based Malware Detectors

计算机科学 恶意软件 探测器 对抗制 数据挖掘 黑匣子 人工智能 排名(信息检索) 机器学习 深层神经网络 人工神经网络 计算机安全 电信
作者
Xiaohui Chen,Lei Cui,Hui Wen,Zhi Li,Hongsong Zhu,Zhiyu Hao,Limin Sun
标识
DOI:10.1109/dsn58367.2023.00027
摘要

The API call sequence based malware detectors have proven to be promising, especially when incorporated with deep neural networks (DNNs). Several adversarial attack methods are proposed to fool these detectors by introducing undetectable perturbations into normal samples. However, in real-world scenarios, the malware detector provides only the predicted label for a given sample, without exposing its network architecture or output probability, making it challenging for adversarial attacks under the decision-based black-box. Existing work in this area typically relies on random-based methods that suffer high costs and low attack success rates. To address these limitations, we propose a novel decision-based black-box attack against API sequence based malware detectors, called MalAder. Our approach aims to improve the attack success rate as well as query efficiency through a directional perturbation algorithm. First, it utilizes attention-based API ranking to assess the importance of API calls in the context of different API sequences. This assessment guides the insertion position for perturbation. Then, the perturbation is carried out using benign distance perturbing, which gradually shortens the semantic distance from adversarial API sequences to a set of benign samples. Finally, our algorithm iteratively generates adversarial malware samples by performing perturbations. In addition, we have implemented MalAder and evaluated its performance against two classic malware detectors. The results show that MalAder outperforms state-of-the-art decision-based black-box adversarial attacks, proving its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
FF发布了新的文献求助10
5秒前
小丁发布了新的文献求助10
5秒前
ZBL完成签到,获得积分10
6秒前
gattina完成签到,获得积分10
7秒前
shy发布了新的文献求助10
7秒前
8秒前
典雅君浩发布了新的文献求助10
8秒前
9秒前
Lucas应助iying采纳,获得10
10秒前
悲凉的雁风完成签到,获得积分20
12秒前
12秒前
12秒前
欢喜雅蕊完成签到,获得积分20
12秒前
小毕可乐发布了新的文献求助10
13秒前
别具一格完成签到 ,获得积分10
13秒前
huangr123发布了新的文献求助10
14秒前
清水完成签到,获得积分10
15秒前
领导范儿应助痴情的中蓝采纳,获得10
16秒前
qingqing完成签到 ,获得积分10
16秒前
fan完成签到 ,获得积分10
17秒前
xibei完成签到 ,获得积分10
18秒前
山楂发布了新的文献求助10
20秒前
Lucas应助纯情的碧玉采纳,获得10
21秒前
22秒前
古藤完成签到 ,获得积分10
22秒前
23秒前
25秒前
25秒前
xixi发布了新的文献求助10
26秒前
香蕉觅云应助Ricardo采纳,获得10
26秒前
wangping完成签到,获得积分10
26秒前
iying发布了新的文献求助10
28秒前
28秒前
山楂完成签到,获得积分10
28秒前
29秒前
婷婷发布了新的文献求助10
31秒前
怕黑君浩关注了科研通微信公众号
32秒前
丑八怪发布了新的文献求助10
32秒前
32秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396549
求助须知:如何正确求助?哪些是违规求助? 3006214
关于积分的说明 8820039
捐赠科研通 2693290
什么是DOI,文献DOI怎么找? 1475247
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675628