A novel deep wavelet convolutional neural network for actual ECG signal denoising

计算机科学 降噪 人工智能 模式识别(心理学) 卷积神经网络 噪音(视频) 信号(编程语言) 卷积(计算机科学) 小波 块(置换群论) 人工神经网络 数学 几何学 图像(数学) 程序设计语言
作者
Yanrui Jin,Chengjin Qin,Jinlei Liu,Yunqing Liu,Zhiyuan Li,Chengliang Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105480-105480 被引量:14
标识
DOI:10.1016/j.bspc.2023.105480
摘要

Recently, more than 80% of sudden cardiac death is caused by arrhythmia, whose incidence has increased rapidly. In the actual wearable device acquisition process, ECG recordings are polluted by many different types of noise, mainly including baseline drift (BW), muscle artifact (MA) and electrode motion (EM). Therefore, the effective de-noising of ECG signals plays an important role in the subsequent accurate arrhythmia diagnosis. Nowadays, traditional filtering methods often only focus on one or two kinds of noise. When encountering different noises, different filtering algorithms need to be used, resulting in insufficient generalization ability of the algorithms. Aiming to effectively denoising ECG signals, this paper proposes a novel signal denoising method based on deep wavelet convolutional neural network. Inspired by the structure of the de-noising self-encoder, the convolution layers are used to replace the simple full-connected layers to build the encoder and decoder. Based on automatic feature extraction in convolution layer, the discrete wavelet transform is used to convert the signal into high-frequency and low-frequency components for replacing pooling layers to compress the input data and fully preserve the effective information. Finally, based on the dataset under the real noise conditions, compared with the existing methods, the proposed denoising model has better denoising performance, which reduces 0.194 RMSE and improves 5.99 SNR on average. Thus, the proposed denoising model has good potential in wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助颠倒梦想采纳,获得10
刚刚
一只小锦李完成签到,获得积分20
1秒前
思源应助语上采纳,获得10
3秒前
安塘完成签到,获得积分20
4秒前
4秒前
脑洞疼应助volvoamg采纳,获得10
4秒前
4秒前
5秒前
阿白完成签到,获得积分10
5秒前
thousandlong发布了新的文献求助20
6秒前
7秒前
7秒前
汉堡包应助yangxt-iga采纳,获得10
7秒前
8秒前
天天快乐应助阿达采纳,获得10
8秒前
月不笑发布了新的文献求助10
9秒前
潜水的土拨鼠完成签到,获得积分10
9秒前
where发布了新的文献求助10
10秒前
无花果应助血管垢采纳,获得10
10秒前
Octozhang完成签到,获得积分10
11秒前
12秒前
英姑应助杨迅采纳,获得10
13秒前
汉堡包应助ccbns827采纳,获得10
13秒前
13秒前
13秒前
852应助疏影采纳,获得30
13秒前
15秒前
赘婿应助碧蓝的紫翠采纳,获得10
16秒前
脑洞疼应助愉快的枫叶采纳,获得10
17秒前
Xiaoxiao应助舒心的亦瑶采纳,获得10
18秒前
科研通AI5应助阿芙乐尔采纳,获得10
18秒前
霸气寒天发布了新的文献求助10
18秒前
18秒前
高高的高高完成签到,获得积分20
18秒前
18秒前
呵呵发布了新的文献求助10
18秒前
19秒前
小二郎应助月不笑采纳,获得10
19秒前
L1发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256