Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort

医学 机器学习 统计 线性回归 人工智能 体质指数 骨质疏松症 随机森林 回归 Boosting(机器学习) 均方误差 数学 计算机科学 内科学
作者
Shiow‐Jyu Tzou,Chung‐Hsin Peng,Li-Ying Huang,Fang-Yu Chen,Chun‐Heng Kuo,Chung‐Ze Wu,Ta-Wei Chu
出处
期刊:Journal of The Chinese Medical Association [Lippincott Williams & Wilkins]
卷期号:86 (11): 1028-1036 被引量:1
标识
DOI:10.1097/jcma.0000000000000999
摘要

Background: Population aging is emerging as an increasingly acute challenge for countries around the world. One particular manifestation of this phenomenon is the impact of osteoporosis on individuals and national health systems. Previous studies of risk factors for osteoporosis were conducted using traditional statistical methods, but more recent efforts have turned to machine learning approaches. Most such efforts, however, treat the target variable (bone mineral density [BMD] or fracture rate) as a categorical one, which provides no quantitative information. The present study uses five different machine learning methods to analyze the risk factors for T-score of BMD, seeking to (1) compare the prediction accuracy between different machine learning methods and traditional multiple linear regression (MLR) and (2) rank the importance of 25 different risk factors. Methods: The study sample includes 24 412 women older than 55 years with 25 related variables, applying traditional MLR and five different machine learning methods: classification and regression tree, Naïve Bayes, random forest, stochastic gradient boosting, and eXtreme gradient boosting. The metrics used for model performance comparisons are the symmetric mean absolute percentage error, relative absolute error, root relative squared error, and root mean squared error. Results: Machine learning approaches outperformed MLR for all four prediction errors. The average importance ranking of each factor generated by the machine learning methods indicates that age is the most important factor determining T-score, followed by estimated glomerular filtration rate (eGFR), body mass index (BMI), uric acid (UA), and education level. Conclusion: In a group of women older than 55 years, we demonstrated that machine learning methods provide superior performance in estimating T-Score, with age being the most important impact factor, followed by eGFR, BMI, UA, and education level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kyoko886完成签到,获得积分10
2秒前
wu8577应助小猪玉采纳,获得10
2秒前
wenxian完成签到,获得积分10
5秒前
xiaozhao发布了新的文献求助150
5秒前
5秒前
5秒前
FashionBoy应助司空笑白采纳,获得10
7秒前
8秒前
9秒前
Merlin应助陈三三采纳,获得30
9秒前
嗯嗯嗯发布了新的文献求助10
12秒前
白羊完成签到,获得积分10
12秒前
chensihao发布了新的文献求助10
13秒前
谦让的莆完成签到 ,获得积分10
13秒前
李爱国应助xiaohong采纳,获得10
14秒前
16秒前
梦灵发布了新的文献求助10
17秒前
123456发布了新的文献求助10
17秒前
充电宝应助Wang采纳,获得10
18秒前
简时完成签到 ,获得积分10
18秒前
19秒前
21秒前
22秒前
22秒前
24秒前
squirrelcone发布了新的文献求助30
25秒前
啦啦啦完成签到,获得积分20
25秒前
rena发布了新的文献求助10
25秒前
26秒前
淡然问儿发布了新的文献求助10
27秒前
28秒前
燕尔蓝完成签到,获得积分10
29秒前
Cmwla发布了新的文献求助10
29秒前
29秒前
小蜻蜓应助月光族采纳,获得10
30秒前
31秒前
31秒前
hhd发布了新的文献求助10
32秒前
Trost完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547