Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort

医学 机器学习 统计 线性回归 人工智能 体质指数 骨质疏松症 随机森林 回归 Boosting(机器学习) 均方误差 数学 计算机科学 内科学
作者
Shiow‐Jyu Tzou,Chung‐Hsin Peng,Li-Ying Huang,Fang-Yu Chen,Chun‐Heng Kuo,Chung‐Ze Wu,Ta-Wei Chu
出处
期刊:Journal of The Chinese Medical Association [Ovid Technologies (Wolters Kluwer)]
卷期号:86 (11): 1028-1036 被引量:1
标识
DOI:10.1097/jcma.0000000000000999
摘要

Background: Population aging is emerging as an increasingly acute challenge for countries around the world. One particular manifestation of this phenomenon is the impact of osteoporosis on individuals and national health systems. Previous studies of risk factors for osteoporosis were conducted using traditional statistical methods, but more recent efforts have turned to machine learning approaches. Most such efforts, however, treat the target variable (bone mineral density [BMD] or fracture rate) as a categorical one, which provides no quantitative information. The present study uses five different machine learning methods to analyze the risk factors for T-score of BMD, seeking to (1) compare the prediction accuracy between different machine learning methods and traditional multiple linear regression (MLR) and (2) rank the importance of 25 different risk factors. Methods: The study sample includes 24 412 women older than 55 years with 25 related variables, applying traditional MLR and five different machine learning methods: classification and regression tree, Naïve Bayes, random forest, stochastic gradient boosting, and eXtreme gradient boosting. The metrics used for model performance comparisons are the symmetric mean absolute percentage error, relative absolute error, root relative squared error, and root mean squared error. Results: Machine learning approaches outperformed MLR for all four prediction errors. The average importance ranking of each factor generated by the machine learning methods indicates that age is the most important factor determining T-score, followed by estimated glomerular filtration rate (eGFR), body mass index (BMI), uric acid (UA), and education level. Conclusion: In a group of women older than 55 years, we demonstrated that machine learning methods provide superior performance in estimating T-Score, with age being the most important impact factor, followed by eGFR, BMI, UA, and education level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
1秒前
科研通AI2S应助草木采纳,获得10
1秒前
暴躁的访波完成签到,获得积分10
1秒前
gy发布了新的文献求助10
2秒前
zhangh65完成签到,获得积分10
3秒前
4秒前
闾丘惜萱完成签到,获得积分10
6秒前
7秒前
义气聪展完成签到 ,获得积分10
9秒前
9秒前
gy完成签到,获得积分10
10秒前
点点完成签到 ,获得积分10
11秒前
13秒前
yyuan完成签到,获得积分10
13秒前
13秒前
专注寻菱完成签到,获得积分10
13秒前
阿腾发布了新的文献求助10
16秒前
脑三问完成签到,获得积分0
16秒前
yunidesuuu发布了新的文献求助10
18秒前
augur完成签到,获得积分10
19秒前
科目三应助yoyo采纳,获得10
19秒前
大水牛完成签到,获得积分10
21秒前
JIE发布了新的文献求助10
21秒前
23秒前
25秒前
薰硝壤应助寂寞的寒风采纳,获得10
26秒前
猪皮king完成签到,获得积分10
26秒前
26秒前
陈晶完成签到 ,获得积分10
26秒前
蚂蚁完成签到 ,获得积分10
27秒前
单薄的忆枫完成签到,获得积分10
28秒前
28秒前
爆米花应助将将采纳,获得10
28秒前
28秒前
景Q同学发布了新的文献求助10
30秒前
wzh发布了新的文献求助10
32秒前
33秒前
科研通AI2S应助十二采纳,获得10
33秒前
大帅完成签到 ,获得积分10
34秒前
英姑应助傻子与白痴采纳,获得10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226