Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort

医学 机器学习 统计 线性回归 人工智能 体质指数 骨质疏松症 随机森林 回归 Boosting(机器学习) 均方误差 数学 计算机科学 内科学
作者
Shiow‐Jyu Tzou,Chung‐Hsin Peng,Li-Ying Huang,Fang-Yu Chen,Chun‐Heng Kuo,Chung‐Ze Wu,Ta-Wei Chu
出处
期刊:Journal of The Chinese Medical Association [Ovid Technologies (Wolters Kluwer)]
卷期号:86 (11): 1028-1036 被引量:1
标识
DOI:10.1097/jcma.0000000000000999
摘要

Background: Population aging is emerging as an increasingly acute challenge for countries around the world. One particular manifestation of this phenomenon is the impact of osteoporosis on individuals and national health systems. Previous studies of risk factors for osteoporosis were conducted using traditional statistical methods, but more recent efforts have turned to machine learning approaches. Most such efforts, however, treat the target variable (bone mineral density [BMD] or fracture rate) as a categorical one, which provides no quantitative information. The present study uses five different machine learning methods to analyze the risk factors for T-score of BMD, seeking to (1) compare the prediction accuracy between different machine learning methods and traditional multiple linear regression (MLR) and (2) rank the importance of 25 different risk factors. Methods: The study sample includes 24 412 women older than 55 years with 25 related variables, applying traditional MLR and five different machine learning methods: classification and regression tree, Naïve Bayes, random forest, stochastic gradient boosting, and eXtreme gradient boosting. The metrics used for model performance comparisons are the symmetric mean absolute percentage error, relative absolute error, root relative squared error, and root mean squared error. Results: Machine learning approaches outperformed MLR for all four prediction errors. The average importance ranking of each factor generated by the machine learning methods indicates that age is the most important factor determining T-score, followed by estimated glomerular filtration rate (eGFR), body mass index (BMI), uric acid (UA), and education level. Conclusion: In a group of women older than 55 years, we demonstrated that machine learning methods provide superior performance in estimating T-Score, with age being the most important impact factor, followed by eGFR, BMI, UA, and education level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
研友_QQC完成签到,获得积分10
2秒前
NeuroWhite完成签到,获得积分10
2秒前
2秒前
搜索v完成签到,获得积分10
3秒前
liuchuck完成签到 ,获得积分10
3秒前
3秒前
3秒前
猫独秀完成签到,获得积分10
3秒前
5秒前
buno应助yuefeng采纳,获得10
5秒前
yiming完成签到,获得积分10
5秒前
落落发布了新的文献求助10
6秒前
清秋若月完成签到 ,获得积分10
6秒前
6秒前
呵呵呵呵完成签到,获得积分10
7秒前
7秒前
远方发布了新的文献求助10
8秒前
zxc111关注了科研通微信公众号
8秒前
9秒前
nanhe698发布了新的文献求助10
9秒前
Huang完成签到,获得积分10
9秒前
碳土不凡完成签到 ,获得积分10
10秒前
10秒前
淡淡采白发布了新的文献求助10
11秒前
11秒前
12秒前
Akim应助dingdong采纳,获得10
12秒前
12秒前
12秒前
satchzhao发布了新的文献求助10
12秒前
可爱的函函应助尺素寸心采纳,获得10
12秒前
66发布了新的文献求助10
13秒前
一鸣完成签到,获得积分10
13秒前
13秒前
ding应助呵呵呵呵采纳,获得10
13秒前
13秒前
汉堡包应助hkxfg采纳,获得10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808