作者
Lu Wang,Hanyue Wang,Jianhua Fan,Zhiwu Han
摘要
Biodiesel is considered as one of the most promising alternative fuels due to the depletion of fossil fuels and the need to cope with potential energy shortages in the future. This article provides a thorough analysis of biodiesel synthesis, covering a variety of topics including oil feedstock, synthesis methods, catalysts, and enhancement technologies. Different oil feedstock for the synthesis of biodiesel is compared in the review, including edible plant oil, non-edible plant oil, waste cooking oil, animal fat, microbial oil, and algae oil. In addition, different methods for the synthesis of biodiesel are discussed, including direct use, blending, thermal cracking, microemulsions, and transesterification processes, highlighting their respective advantages and disadvantages. Among them, the transesterification method is the most commonly used and a thorough examination is given of the benefits and drawbacks of utilizing enzymatic, heterogeneous, and homogeneous catalysts in this process. Moreover, this article provides an overview of emerging intensification technologies, such as ultrasonic and microwave-assisted, electrolysis, reactive distillation, and microreactors. The benefits and limitations of these emerging technologies are also reviewed. The contribution of this article is offering a thorough and detailed review of biodiesel production technologies, focusing mainly on recent advances in enhanced chemical reaction processes. This provides a resource for researchers to assess and compare the latest advancements in their investigations. It also opens up the potential for enhancing the value of oil feedstocks efficiently, contributing to the development of new energy sources.